New Class of Probability Distributions Arising from Teissier Distribution

Author(s):  
Sudhanshu V. Singh ◽  
Mohammed Elgarhy ◽  
Zubair Ahmad ◽  
Vikas Kumar Sharma ◽  
Gholamhossein G. Hamedani
2019 ◽  
Vol 7 (1) ◽  
pp. 215-233
Author(s):  
Corina D. Constantinescu ◽  
Tomasz J. Kozubowski ◽  
Haoyu H. Qian

AbstractWe present basic properties and discuss potential insurance applications of a new class of probability distributions on positive integers with power law tails. The distributions in this class are zero-inflated discrete counterparts of the Pareto distribution. In particular, we obtain the probability of ruin in the compound binomial risk model where the claims are zero-inflated discrete Pareto distributed and correlated by mixture.


Synthese ◽  
2021 ◽  
Author(s):  
Ilkka Niiniluoto

AbstractIn the general problem of verisimilitude, we try to define the distance of a statement from a target, which is an informative truth about some domain of investigation. For example, the target can be a state description, a structure description, or a constituent of a first-order language (Sect. 1). In the problem of legisimilitude, the target is a deterministic or universal law, which can be expressed by a nomic constituent or a quantitative function involving the operators of physical necessity and possibility (Sect. 2). The special case of legisimilitude, where the target is a probabilistic law (Sect. 3), has been discussed by Roger Rosenkrantz (Synthese, 1980) and Ilkka Niiniluoto (Truthlikeness, 1987, Ch. 11.5). Their basic proposal is to measure the distance between two probabilistic laws by the Kullback–Leibler notion of divergence, which is a semimetric on the space of probability measures. This idea can be applied to probabilistic laws of coexistence and laws of succession, and the examples may involve discrete or continuous state spaces (Sect. 3). In this paper, these earlier studies are elaborated in four directions (Sect. 4). First, even though deterministic laws are limiting cases of probabilistic laws, the target-sensitivity of truthlikeness measures implies that the legisimilitude of probabilistic laws is not easily reducible to the deterministic case. Secondly, the Jensen-Shannon divergence is applied to mixed probabilistic laws which entail some universal laws. Thirdly, a new class of distance measures between probability distributions is proposed, so that their horizontal differences are taken into account in addition to vertical ones (Sect. 5). Fourthly, a solution is given for the epistemic problem of estimating degrees of probabilistic legisimilitude on the basis of empirical evidence (Sect. 6).


2011 ◽  
Vol 24 (4) ◽  
pp. 545-552 ◽  
Author(s):  
Saman Shahbaz ◽  
Muhammad Qaiser Shahbaz ◽  
M. Ahsanullah ◽  
Muhammad Mohsin

Author(s):  
DAMIANO AZZOLINI ◽  
FABRIZIO RIGUZZI

Abstract Probabilistic logic programming is an effective formalism for encoding problems characterized by uncertainty. Some of these problems may require the optimization of probability values subject to constraints among probability distributions of random variables. Here, we introduce a new class of probabilistic logic programs, namely probabilistic optimizable logic programs, and we provide an effective algorithm to find the best assignment to probabilities of random variables, such that a set of constraints is satisfied and an objective function is optimized.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
G. C. Ruben ◽  
K. Iqbal ◽  
I. Grundke-Iqbal ◽  
H. Wisniewski ◽  
T. L. Ciardelli ◽  
...  

In neurons, the microtubule associated protein, tau, is found in the axons. Tau stabilizes the microtubules required for neurotransmitter transport to the axonal terminal. Since tau has been found in both Alzheimer neurofibrillary tangles (NFT) and in paired helical filaments (PHF), the study of tau's normal structure had to preceed TEM studies of NFT and PHF. The structure of tau was first studied by ultracentrifugation. This work suggested that it was a rod shaped molecule with an axial ratio of 20:1. More recently, paraciystals of phosphorylated and nonphosphoiylated tau have been reported. Phosphorylated tau was 90-95 nm in length and 3-6 nm in diameter where as nonphosphorylated tau was 69-75 nm in length. A shorter length of 30 nm was reported for undamaged tau indicating that it is an extremely flexible molecule. Tau was also studied in relation to microtubules, and its length was found to be 56.1±14.1 nm.


Sign in / Sign up

Export Citation Format

Share Document