Inspection of Friction Stir Welded Joint Using EMAT Generated Fundamental Shear Horizontal Guided Wave Mode (SH0)

Author(s):  
Nived Suresh ◽  
Sreedhar Puliyakote ◽  
Krishnan Balasubramanian
2021 ◽  
Author(s):  
Christian Peyton ◽  
Rachel S. Edwards ◽  
Steve Dixon ◽  
Ben Dutton ◽  
Wilson Vesga

Abstract This paper investigates the interaction behaviour between the fundamental shear horizontal guided wave mode and small defects, in order to understand and develop an improved inspection system for titanium samples. In this work, an extensive range of defect sizes have been simulated using finite element software. The SH0 reflection from a defect has been shown previously to depend on its length as the total reflection consists of reflections from both the front and back face. However, for small defect widths, this work has found that the width also affects this interference, changing the length at which the reflection is largest. In addition, the paper looks at how the size of the defect affects the mode converted S0 reflection and SH0 diffraction. The relationship between the SH0 diffraction and defect size is shown to be more complex compared to the reflections. The mode converted S0 reflection occurs at an angle to the incident wave direction; therefore, the most suitable angle for the detection has been found. Simultaneous measurement of multiple waves would bring benefits to inspection.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2990 ◽  
Author(s):  
Kim ◽  
Gaul ◽  
Köhler

A piezoelectric fiber patch (PFP) is a transducer type that is suitable for guided-wave-based structural health monitoring (SHM) due to its light, thin, and flexible characteristics. In our previous work, a PFP-based transducer design for selective excitation of the zero-order shear horizontal wave mode (SH0) was introduced (shear horizontal PFP (SHPFP)). In this work, two modified SH0 wave PFP transducer designs are proposed: the rounded corner design and the dual design. The degree of improvement is determined by a numerical simulation and the dual design—the design with the most promise—is experimentally realized. Laser Vibrometry measured the generated wave field, confirming the results from the simulation. The new designs can generate an almost pure SH0 wave. The dual design has a very strong directivity that is useful for several guided-wave-based SHM applications. The conclusions on the design’s properties as a transmitter are also valid for its properties as a sensor due to the reciprocity of piezoelectric transducers.


2018 ◽  
Vol 941 ◽  
pp. 2429-2434
Author(s):  
Ramsey F. Hamade ◽  
Mohammad Ali Fakih ◽  
Mohammad Harb ◽  
Samir Mustapha

Having a robust non-destructive evaluation (NDE) technique for friction stir welded (FSWed) joints is of interest to the processing community. Such a technique has to be sensitive to the different types and shapes of internal weld defects and has to be applicable for both similar and dissimilar material FSW joints. Investigated was the ability of ultrasonic guided waves to detect and assess the quality of FSW joints. The fundamental anti-symmetric (A0) mode was selected to detect the flaws in FSW joints. Guided waves were excited (using PZT wafers) and received (using a laser Doppler vibrometer, LDV). Implemented was the frequency-wavenumber filtering technique to separate forward propagating wave from any back propagating reflected wave due to the welded joint. Identified was the reflection of the A0mode caused by the presence of the interface and/or defects within the joint. The findings indicate little sensitivity to the presence of material interface suggesting this technique to have a promising potential among guided-wave-based techniques in the qualitative and quantitative assessment of FSW joints.


Author(s):  
Andreas A. E. Zimmermann ◽  
Peter Huthwaite ◽  
Brian Pavlakovic

Quantifying corrosion damage is vital for the petrochemical industry, and guided wave tomography can provide thickness maps of such regions by transmitting guided waves through these areas and capturing the scattering information using arrays. The dispersive nature of the guided waves enables a reconstruction of wave velocity to be converted into thickness. However, existing approaches have been shown to be limited in in-plane resolution, significantly short of that required to accurately image a defect target of three times the wall thickness (i.e. 3 T) in each in-plane direction. This is largely due to the long wavelengths of the fundamental modes commonly used, being around 4 T for both A0 and S0 at the typical operation points. In this work, the suitability of the first-order shear-horizontal guided wave mode, SH1, has been investigated to improve the resolution limit. The wavelength at the desired operating point is significantly shorter, enabling an improvement in resolution of around 2.4 times. This is first verified by realistic finite-element simulations and then validated by experimental results, confirming the improved resolution limit can now allow defects of maximum extent 3T-by-3T to be reliably detected and sized, i.e. a long-pursued goal of guided wave tomography has been achieved.


2019 ◽  
Vol 13 (4) ◽  
pp. 5804-5817
Author(s):  
Ibrahim Sabry

It is expected that the demand for Metal Matrix Composite (MMCs) will increase in these applications in the aerospace and automotive industries sectors, strengthened AMC has different advantages over monolithic aluminium alloy as it has characteristics between matrix metal and reinforcement particles.  However, adequate joining technique, which is important for structural materials, has not been established for (MMCs) yet. Conventional fusion welding is difficult because of the irregular redistribution or reinforcement particles.  Also, the reaction between reinforcement particles and aluminium matrix as weld defects such as porosity in the fusion zone make fusion welding more difficult. The aim of this work was to show friction stir welding (FSW) feasibility for entering Al 6061/5 to Al 6061/18 wt. % SiCp composites has been produced by using stir casting technique. SiCp is added as reinforcement in to Aluminium alloy (Al 6061) for preparing metal matrix composite. This method is less expensive and very effective. Different rotational speeds,1000 and 1800 rpm and traverse speed 10 mm \ min was examined. Specimen composite plates having thick 10 mm were FS welded successfully. A high-speed steel (HSS) cylindrical instrument with conical pin form was used for FSW. The outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt. %) was 195 MPa at rotation speed 1800 rpm, the outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt.%) was 165 MPa at rotation speed 1000 rpm, that was very near to the composite matrix as-cast strength. The research of microstructure showed the reason for increased joint strength and microhardness. The microstructural study showed the reason (4 %) for higher joint strength and microhardness.  due to Significant   of SiCp close to the boundary of the dynamically recrystallized and thermo mechanically affected zone (TMAZ) was observed through rotation speed 1800 rpm. The friction stir welded ultimate tensile strength Decreases as the volume fraction increases of SiCp (18 wt.%).


Sign in / Sign up

Export Citation Format

Share Document