Simultaneous Wastewater Treatment and Carbon Capture for Energy Production

Author(s):  
Priyanka Verma ◽  
Deepshikha Pandey ◽  
Usharani Krishnaswamy ◽  
Kasturi Dutta ◽  
Achlesh Daverey ◽  
...  
2021 ◽  
Vol 412 ◽  
pp. 128612
Author(s):  
Himadri Rajput ◽  
Eilhann E. Kwon ◽  
Sherif A. Younis ◽  
Seunghyun Weon ◽  
Tae Hwa Jeon ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 8057
Author(s):  
Mostafa Ghasemi ◽  
Mehdi Sedighi ◽  
Yie Hua Tan

In this paper, we reported the fabrication, characterization, and application of carbon nanotube (CNT)-platinum nanocomposite as a novel generation of cathode catalyst in microbial fuel cells (MFCs) for sustainable energy production and wastewater treatment. The efficiency of the carbon nanocomposites was compared by platinum (Pt), which is the most effective and common cathode catalyst. This nanocomposite is utilized to benefit from the catalytic properties of CNTs and reduce the amount of required Pt, as it is an expensive catalyst. The CNT/Pt nanocomposites were synthesized via a chemical reduction technique and the electrodes were characterized by field emission scanning electron microscopy, electronic dispersive X-Ray analysis, and transmission electron microscopy. The nanocomposites were applied as cathode catalysts in the MFC to obtain polarization curve and coulombic efficiency (CE) results. The catalytic properties of electrodes were tested by linear sweep voltammetry. The CNT/Pt at the concentration of 0.3 mg/cm2 had the highest performance in terms of CE (47.16%), internal resistance (551 Ω), COD removal (88.9%), and power generation (143 mW/m2). In contrast, for the electrode with 0.5 mg/L of Pt catalyst, CE, internal resistance, COD removal, and power generation were 19%, 810 Ω, 96%, and 84.1 mW/m2, respectively. So, it has been found that carbon nanocomposite cathode electrodes had better performance for sustainable clean energy production and COD removal by MFC.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2282
Author(s):  
Sanjeet Mehariya ◽  
Rahul Kumar Goswami ◽  
Pradeep Verma ◽  
Roberto Lavecchia ◽  
Antonio Zuorro

The increasing world population generates huge amounts of wastewater as well as large energy demand. Additionally, fossil fuel’s combustion for energy production causes the emission of greenhouse gases (GHG) and other pollutants. Therefore, there is a strong need to find alternative green approaches for wastewater treatment and energy production. Microalgae biorefineries could represent an effective strategy to mitigate the above problems. Microalgae biorefineries are a sustainable alternative to conventional wastewater treatment processes, as they potentially allow wastewater to be treated at lower costs and with lower energy consumption. Furthermore, they provide an effective means to recover valuable compounds for biofuel production or other applications. This review focuses on the current scenario and future prospects of microalgae biorefineries aimed at combining wastewater treatment with biofuel production. First, the different microalgal cultivation systems are examined, and their main characteristics and limitations are discussed. Then, the technologies available for converting the biomass produced during wastewater treatment into biofuel are critically analyzed. Finally, current challenges and research directions for biofuel production and wastewater treatment through this approach are outlined.


2020 ◽  
Vol 5 (10) ◽  
pp. 1260-1262
Author(s):  
Stela Sefa ◽  
Tania Floqi ◽  
Julian Sefa

The wastewater treatment plant serving the city of Durres, which is the second most populous city of Albania, employs the tertiary advanced wastewater treatment method and engages in biogas production to achieve energy efficiency. In order to empirically evaluate the plant’s energy efficiency realization, the total biogas produced and converted to electricity for daily consumption was measured during a three years period (2016 - 2018). The highest electricity produced was recorded in 2016, with a daily average of 844kWh compared to 550kWh and 370kWh in 2017 and 2018, respectively. So that the plant meets proper criteria to classify as an energy-efficient entity, 30.0 percent of its electricity consumption must be derived from biogas. Converted in kWh, the plant should generate 2,975 kWh/day. Based on the biomass and energy values measured during the study period, it is concluded that electricity supplied from biogas met 6.0 percent of the plant’s energy requirements, or one fifth of the energy-efficiency target. While the plant was successful in carrying out the full waste-to-energy production process, the electricity supplied from biogas was very low and did not fulfil the plant’s self-energy requirements.


2014 ◽  
Vol 63 ◽  
pp. 7349-7358 ◽  
Author(s):  
Reza Ganjdanesh ◽  
Steven L. Bryant ◽  
Gary A. Pope ◽  
Kamy Sepehrnoori

Sign in / Sign up

Export Citation Format

Share Document