SDN-Enabled ABE-Based Secure Communication for Smart Healthcare

Author(s):  
L. Pavithra ◽  
D. Rekha
Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yuwen Pu ◽  
Jin Luo ◽  
Chunqiang Hu ◽  
Jiguo Yu ◽  
Ruifeng Zhao ◽  
...  

As the next generation of information and communication infrastructure, Internet of Things (IoT) enables many advanced applications such as smart healthcare, smart grid, smart home, and so on, which provide the most flexibility and convenience in our daily life. However, pervasive security and privacy issues are also increasing in IoT. For instance, an attacker can get health condition of a patient via analyzing real-time records in a smart healthcare application. Therefore, it is very important for users to protect their private data. In this paper, we present two efficient data aggregation schemes to preserve private data of customers. In the first scheme, each IoT device slices its actual data randomly, keeps one piece to itself, and sends the remaining pieces to other devices which are in the same group via symmetric encryption. Then, each IoT device adds the received pieces and the held piece together to get an immediate result, which is sent to the aggregator after the computation. Moreover, homomorphic encryption and AES encryption are employed to guarantee secure communication. In the second scheme, the slicing strategy is also employed. Noise data are introduced to prevent the exchanged actual data of devices from disclosure when the devices blend data each other. AES encryption is also employed to guarantee secure communication between devices and aggregator, compared to homomorphic encryption, which has significantly less computational cost. Analysis shows that integrity and confidentiality of IoT devices’ data can be guaranteed in our schemes. Both schemes can resist external attack, internal attack, colluding attack, and so on.


2019 ◽  
Vol 16 (10) ◽  
pp. 4345-4349
Author(s):  
Latika Kakkar ◽  
Deepali Gupta ◽  
Sapna Saxena ◽  
Sarvesh Tanwar

The Internet of Things (IoT) comprises of various smart devices which are networked together to detect, accumulate, process, improve and interchange significant data over the Internet. IoT has improved our lifestyle by offering various applications such as intelligent home, smart healthcare, traffic monitoring and smart city devices. The IoT devices have restriction of power, battery life, memory and network constraints, so cloud can be used for accumulating and analyzing the IoT data. Due to the considerable increase in data transfer over Internet and other devices, the confidential information from the IoT sources required to be secure from any third party access. Cloud computing (CC) on the other side provides a protected, abrupt and advantageous data storage and computing services all over the internet. The integration of both these technologies can prove to be beneficial for each other. Therefore, we need an efficient and authentic method for secure communication in the IoT and cloud based big data environment. This paper provides a review of amalgamation of the IoT and cloud by featuring the implementation challenges and integration benefits.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1219
Author(s):  
Divya Guru ◽  
Supraja Perumal ◽  
Vijayakumar Varadarajan

A blockchain is a decentralized peer to peer platform which provides security services based on some key concepts, namely authentication, confidentiality, integrity and authorization. It is the process of recording and keeping track of the resources without the intervention of a centralized authority. This paper provides an overview of blockchains, the structure of blockchains, consensus algorithms, etc., It compares the algorithms based on their utility and limitations. Though blockchains provide secure communication, there are some minimal data leaks which are discussed. Various security issues in blockchains are discussed such as denial of service attacks, etc., In addition to security, some other blockchain challenges are presented like scalability, reliability, interoperability, privacy and consensus mechanisms for integration with AI, IoT and edge computing. This paper also explains about the importance of blockchains in the fields of smart healthcare, smart grid, and smart financial systems. Overall, this paper gives the glimpse of various protocols, algorithms, applications, challenges and opportunities that are found in the blockchain domain.


2019 ◽  
Vol 100 ◽  
pp. 938-951 ◽  
Author(s):  
Venkatasamy Sureshkumar ◽  
Ruhul Amin ◽  
V.R. Vijaykumar ◽  
S. Raja Sekar

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3619 ◽  
Author(s):  
Gordana Gardašević ◽  
Konstantinos Katzis ◽  
Dragana Bajić ◽  
Lazar Berbakov

Future smart healthcare systems—often referred to as Internet of Medical Things (IoMT) – will combine a plethora of wireless devices and applications that use wireless communication technologies to enable the exchange of healthcare data. Smart healthcare requires sufficient bandwidth, reliable and secure communication links, energy-efficient operations, and Quality of Service (QoS) support. The integration of Internet of Things (IoT) solutions into healthcare systems can significantly increase intelligence, flexibility, and interoperability. This work provides an extensive survey on emerging IoT communication standards and technologies suitable for smart healthcare applications. A particular emphasis has been given to low-power wireless technologies as a key enabler for energy-efficient IoT-based healthcare systems. Major challenges in privacy and security are also discussed. A particular attention is devoted to crowdsourcing/crowdsensing, envisaged as tools for the rapid collection of massive quantities of medical data. Finally, open research challenges and future perspectives of IoMT are presented.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 790
Author(s):  
Haqi Khalid ◽  
Shaiful Jahari Hashim ◽  
Sharifah Mumtazah Syed Ahmad ◽  
Fazirulhisyam Hashim ◽  
Muhammad Akmal Chaudhary

Several wireless devices and applications can be connected through wireless communication technologies to exchange data in future intelligent health systems (e.g., the Internet of Medical Things (IoMT)). Smart healthcare requires ample bandwidth, reliable and effective communications networks, energy-efficient operations, and quality of service support (QoS). Healthcare service providers host multi-servers to ensure seamless services are provided to the end-users. By supporting a multi-server environment, healthcare medical sensors produce many data transmitted via servers, which is impossible in a single-server architecture. To ensure data security, secure online communication must be considered since the transmitted data are sensitive. Hence, the adversary may try to interrupt the transmission and drop or modify the message. Many researchers have proposed an authentication scheme to secure the data, but the schemes are vulnerable to specific attacks (modification attacks, replay attacks, server spoofing attacks, Man-in-the middle (MiTM) attacks, etc.). However, the absence of an authentication scheme that supports a multi-server security in such a comprehensive development in a distributed server is still an issue. In this paper, a secure authentication scheme using wireless medical sensor networks for a multi-server environment is proposed (Cross-SN). The scheme is implemented with a smart card, password, and user identity. Elliptic curve cryptography is utilized in the scheme, and Burrows–Abadi–Needham (BAN) logic is utilized to secure mutual authentication and to analyse the proposed scheme’s security. It offers adequate protection against replies, impersonation, and privileged insider attacks and secure communication in multi-server parties that communicate with each other.


Author(s):  
Amolkirat Singh ◽  
Guneet Saini

Many people lose their life and/or are injured due to accidents or unexpected events taking place on road networks. Besides traffic jams, these accidents generate a tremendous waste of time and fuel. Undoubtedly, if the vehicles are provided with timely and dynamic information related to road traffic conditions, any unexpected events or accidents, the safety and efficiency of the transportation system with respect to time, distance, fuel consumption and environmentally destructive emissions can be improved. In the field of computer and information science, Vehicular Ad hoc Network (VANET) have recently emerged as an effective tool for improving road safety through propagation of warning messages among the vehicles in the network about potential obstacles on the road ahead. VANET is a research area which is in more demand among the researchers, the automobile industries and scientists to discover about the loopholes and advantages of the vehicular networks so that efficient routing algorithms can be developed which can provide reliable and secure communication among the mobile nodes.In this paper, we propose a Groundwork Based Ad hoc On Demand Distance Vector Routing Protocol (GAODV) focus on how the Road Side Units (RSU’s) utilized in the architecture plays an important role for making the communication reliable. In the interval of finding the suitable path from source to destination the packet loss may occur and the delay also is counted if the required packet does not reach the specified destination on time. So to overcome delay, packet loss and to increase throughput GAODV approach is followed. The performance parameters in the GAODV comes out to be much better than computed in the traditional approach.


Sign in / Sign up

Export Citation Format

Share Document