scholarly journals Approaches towards Blockchain Innovation: A Survey and Future Directions

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1219
Author(s):  
Divya Guru ◽  
Supraja Perumal ◽  
Vijayakumar Varadarajan

A blockchain is a decentralized peer to peer platform which provides security services based on some key concepts, namely authentication, confidentiality, integrity and authorization. It is the process of recording and keeping track of the resources without the intervention of a centralized authority. This paper provides an overview of blockchains, the structure of blockchains, consensus algorithms, etc., It compares the algorithms based on their utility and limitations. Though blockchains provide secure communication, there are some minimal data leaks which are discussed. Various security issues in blockchains are discussed such as denial of service attacks, etc., In addition to security, some other blockchain challenges are presented like scalability, reliability, interoperability, privacy and consensus mechanisms for integration with AI, IoT and edge computing. This paper also explains about the importance of blockchains in the fields of smart healthcare, smart grid, and smart financial systems. Overall, this paper gives the glimpse of various protocols, algorithms, applications, challenges and opportunities that are found in the blockchain domain.

Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


2019 ◽  
pp. 172-176
Author(s):  
Otegbulu M. I. ◽  
Ezeagu A. Agbo ◽  
Agbo Genevieve N.

Security is pre-requisite for the development of human beings and the society. It is a pre-condition for the survival, development and advancement of individuals and groups. The school is an organization that needs to have a planned safety rules and regulations to protect it components so that the culture of learning and teaching is enhanced. Security threat within the school environment could hamper the peaceful atmosphere in the school, and disrupt academic exercises and panic among the personnel in the school. The government, security agents, parents, school administrators and the community has a lot of role to play to make school environment safe and conducive. However, security gadgets and apparatus should be provided to nip these issues in the bud, as well as train the teaching and non-teaching staff on security issues.


Author(s):  
Jason M. Holland ◽  
Dolores Gallagher-Thompson

Older adults are increasingly making up a larger segment of the worldwide population, which presents both challenges and opportunities for the clinical psychologist in the 21st century. In this chapter, we address some of the unique aspects of working with this population, focusing on general guidelines for tailoring interventions for older adults, specific treatments for particular problems commonly faced in later life, as well as issues of diversity and how they might impact psychotherapy with older clients. We also outline several areas in geropsychology that are in need of further investigation, namely the use of technology, post-traumatic stress, and family therapy, and offer some recommendations for future directions in this field of study.


2020 ◽  
pp. 1-26
Author(s):  
Qinwen Hu ◽  
Muhammad Rizwan Asghar ◽  
Nevil Brownlee

HTTPS refers to an application-specific implementation that runs HyperText Transfer Protocol (HTTP) on top of Secure Socket Layer (SSL) or Transport Layer Security (TLS). HTTPS is used to provide encrypted communication and secure identification of web servers and clients, for different purposes such as online banking and e-commerce. However, many HTTPS vulnerabilities have been disclosed in recent years. Although many studies have pointed out that these vulnerabilities can lead to serious consequences, domain administrators seem to ignore them. In this study, we evaluate the HTTPS security level of Alexa’s top 1 million domains from two perspectives. First, we explore which popular sites are still affected by those well-known security issues. Our results show that less than 0.1% of HTTPS-enabled servers in the measured domains are still vulnerable to known attacks including Rivest Cipher 4 (RC4), Compression Ratio Info-Leak Mass Exploitation (CRIME), Padding Oracle On Downgraded Legacy Encryption (POODLE), Factoring RSA Export Keys (FREAK), Logjam, and Decrypting Rivest–Shamir–Adleman (RSA) using Obsolete and Weakened eNcryption (DROWN). Second, we assess the security level of the digital certificates used by each measured HTTPS domain. Our results highlight that less than 0.52% domains use the expired certificate, 0.42% HTTPS certificates contain different hostnames, and 2.59% HTTPS domains use a self-signed certificate. The domains we investigate in our study cover 5 regions (including ARIN, RIPE NCC, APNIC, LACNIC, and AFRINIC) and 61 different categories such as online shopping websites, banking websites, educational websites, and government websites. Although our results show that the problem still exists, we find that changes have been taking place when HTTPS vulnerabilities were discovered. Through this three-year study, we found that more attention has been paid to the use and configuration of HTTPS. For example, more and more domains begin to enable the HTTPS protocol to ensure a secure communication channel between users and websites. From the first measurement, we observed that many domains are still using TLS 1.0 and 1.1, SSL 2.0, and SSL 3.0 protocols to support user clients that use outdated systems. As the previous studies revealed security risks of using these protocols, in the subsequent studies, we found that the majority of domains updated their TLS protocol on time. Our 2020 results suggest that most HTTPS domains use the TLS 1.2 protocol and show that some HTTPS domains are still vulnerable to the existing known attacks. As academics and industry professionals continue to disclose attacks against HTTPS and recommend the secure configuration of HTTPS, we found that the number of vulnerable domain is gradually decreasing every year.


2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Matteo Repetto ◽  
Domenico Striccoli ◽  
Giuseppe Piro ◽  
Alessandro Carrega ◽  
Gennaro Boggia ◽  
...  

AbstractToday, the digital economy is pushing new business models, based on the creation of value chains for data processing, through the interconnection of processes, products, services, software, and things across different domains and organizations. Despite the growing availability of communication infrastructures, computing paradigms, and software architectures that already effectively support the implementation of distributed multi-domain value chains, a comprehensive architecture is still missing that effectively fulfills all related security issues: mutual trustworthiness of entities in partially unknown topologies, identification and mitigation of advanced multi-vector threats, identity management and access control, management and propagation of sensitive data. In order to fill this gap, this work proposes a new methodological approach to design and implement heterogeneous security services for distributed systems that combine together digital resources and components from multiple domains. The framework is designed to support both existing and new security services, and focuses on three novel aspects: (i) full automation of the processes that manage the whole system, i.e., threat detection, collection of information and reaction to attacks and system anomalies; (ii) dynamic adaptation of operations and security tasks to newest attack patterns, and (iii) real-time adjustment of the level of detail of inspection and monitoring processes. The overall architecture as well as the functions and relationships of its logical components are described in detail, presenting also a concrete use case as an example of application of the proposed framework.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2057
Author(s):  
Yongho Ko ◽  
Jiyoon Kim ◽  
Daniel Gerbi Duguma ◽  
Philip Virgil Astillo ◽  
Ilsun You ◽  
...  

Unmanned Aerial Vehicle (UAV) plays a paramount role in various fields, such as military, aerospace, reconnaissance, agriculture, and many more. The development and implementation of these devices have become vital in terms of usability and reachability. Unfortunately, as they become widespread and their demand grows, they are becoming more and more vulnerable to several security attacks, including, but not limited to, jamming, information leakage, and spoofing. In order to cope with such attacks and security threats, a proper design of robust security protocols is indispensable. Although several pieces of research have been carried out with this regard, there are still research gaps, particularly concerning UAV-to-UAV secure communication, support for perfect forward secrecy, and provision of non-repudiation. Especially in a military scenario, it is essential to solve these gaps. In this paper, we studied the security prerequisites of the UAV communication protocol, specifically in the military setting. More importantly, a security protocol (with two sub-protocols), that serves in securing the communication between UAVs, and between a UAV and a Ground Control Station, is proposed. This protocol, apart from the common security requirements, achieves perfect forward secrecy and non-repudiation, which are essential to a secure military communication. The proposed protocol is formally and thoroughly verified by using the BAN-logic (Burrow-Abadi-Needham logic) and Scyther tool, followed by performance evaluation and implementation of the protocol on a real UAV. From the security and performance evaluation, it is indicated that the proposed protocol is superior compared to other related protocols while meeting confidentiality, integrity, mutual authentication, non-repudiation, perfect forward secrecy, perfect backward secrecy, response to DoS (Denial of Service) attacks, man-in-the-middle protection, and D2D (Drone-to-Drone) security.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 64 ◽  
Author(s):  
S. Renu ◽  
S.H. Krishna Veni

The Cloud computing services and security issues are growing exponentially with time. All the CSPs provide utmost security but the issues still exist. Number of technologies and methods are emerged and futile day by day. In order to overcome this situation, we have also proposed a data storage security system using a binary tree approach. Entire services of the binary tree are provided by a Trusted Third Party (TTP) .TTP is a government or reputed organization which facilitates to protect user data from unauthorized access and disclosure. The security services are designed and implemented by the TTP and are executed at the user side. Data classification, Data Encryption and Data Storage are the three vital stages of the security services. An automated file classifier classify unorganized files into four different categories such as Sensitive, Private, Protected and Public. Applied cryptographic techniques are used for data encryption. File splitting and multiple cloud storage techniques are used for data outsourcing which reduces security risks considerably. This technique offers  file protection even when the CSPs compromise. 


2021 ◽  
Author(s):  
Khushal Singh ◽  
Nanhay Singh

Abstract Internet of Things (IoT) is the domain of interest for the researchers at the present with the exponential growth in technology. Security in IoT is a prime factor, which highlights the need for authentication to tackle various attackers and hackers. Authentication is the process that uniquely identifies the incoming user and this paper develops an authentication protocol based on the chebyshev polynomial, hashing function, session password, and Encryption. The proposed authentication protocol is named as, proposed Elliptic, chebyshev, Session password, and Hash function (ECSH)-based multilevel authentication. For authenticating the incoming user, there are two phases, registration and authentication. In the registration phase, the user is registered with the server and Authentication center (AC), and the authentication follows, which is an eight-step criterion. The authentication is duly based on the scale factor of the user and server, session password, and verification messages. The authentication at the eight levels assures the security against various types of attacks and renders secure communication in IoT with minimal communication overhead and packet-loss. The performance of the method is analyzed using black-hole and Denial-of-service (DOS) attacks with 50 and 100 nodes in the simulation environment. The proposed ECSH-based multilevel authentication acquired the maximal detection rate, PDR, and QOS of 15.2%, 35.7895%, and 26.4623%, respectively in the presence of 50 nodes and DOS attacks, whereas the minimal delay of 135.922 ms is acquired in the presence of 100 nodes and DOS attacks.


The advancement of information and communications technology has changed an IoMT-enabled healthcare system. The Internet of Medical Things (IoMT) is a subset of the Internet of Things (IoT) that focuses on smart healthcare (medical) device connectivity. While the Internet of Medical Things (IoMT) communication environment facilitates and supports our daily health activities, it also has drawbacks such as password guessing, replay, impersonation, remote hijacking, privileged insider, denial of service (DoS), and man-in-the-middle attacks, as well as malware attacks. Malware botnets cause assaults on the system's data and other resources, compromising its authenticity, availability, confidentiality and, integrity. In the event of such an attack, crucial IoMT communication data may be exposed, altered, or even unavailable to authorised users. As a result, malware protection for the IoMT environment becomes critical. In this paper, we provide several forms of malware attacks and their consequences. We also go through security, privacy, and different IoMT malware detection schemes


Sign in / Sign up

Export Citation Format

Share Document