Extraction of Information from Hyperspectral Imaging Using Deep Learning

Author(s):  
Anasua Banerjee ◽  
Satyajit Swain ◽  
Mainak Bandyopadhyay ◽  
Minakhi Rout
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1288
Author(s):  
Cinmayii A. Garillos-Manliguez ◽  
John Y. Chiang

Fruit maturity is a critical factor in the supply chain, consumer preference, and agriculture industry. Most classification methods on fruit maturity identify only two classes: ripe and unripe, but this paper estimates six maturity stages of papaya fruit. Deep learning architectures have gained respect and brought breakthroughs in unimodal processing. This paper suggests a novel non-destructive and multimodal classification using deep convolutional neural networks that estimate fruit maturity by feature concatenation of data acquired from two imaging modes: visible-light and hyperspectral imaging systems. Morphological changes in the sample fruits can be easily measured with RGB images, while spectral signatures that provide high sensitivity and high correlation with the internal properties of fruits can be extracted from hyperspectral images with wavelength range in between 400 nm and 900 nm—factors that must be considered when building a model. This study further modified the architectures: AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, MobileNet, and MobileNetV2 to utilize multimodal data cubes composed of RGB and hyperspectral data for sensitivity analyses. These multimodal variants can achieve up to 0.90 F1 scores and 1.45% top-2 error rate for the classification of six stages. Overall, taking advantage of multimodal input coupled with powerful deep convolutional neural network models can classify fruit maturity even at refined levels of six stages. This indicates that multimodal deep learning architectures and multimodal imaging have great potential for real-time in-field fruit maturity estimation that can help estimate optimal harvest time and other in-field industrial applications.


Author(s):  
Daniel Vitor de Lucena ◽  
Anderson da Silva Soares ◽  
Clarimar José Coelho ◽  
Isabela Jubé Wastowski ◽  
Arlindo Rodrigues Galvão Filho

2019 ◽  
Vol 25 (S2) ◽  
pp. 178-179
Author(s):  
Samantha Rudinsky ◽  
Yu Yuan ◽  
Francis B. Lavoie ◽  
Raynald Gauvin ◽  
Ryan Gosselin ◽  
...  

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 411 ◽  
Author(s):  
Emanuele Torti ◽  
Alessandro Fontanella ◽  
Antonio Plaza ◽  
Javier Plaza ◽  
Francesco Leporati

One of the most important tasks in hyperspectral imaging is the classification of the pixels in the scene in order to produce thematic maps. This problem can be typically solved through machine learning techniques. In particular, deep learning algorithms have emerged in recent years as a suitable methodology to classify hyperspectral data. Moreover, the high dimensionality of hyperspectral data, together with the increasing availability of unlabeled samples, makes deep learning an appealing approach to process and interpret those data. However, the limited number of labeled samples often complicates the exploitation of supervised techniques. Indeed, in order to guarantee a suitable precision, a large number of labeled samples is normally required. This hurdle can be overcome by resorting to unsupervised classification algorithms. In particular, autoencoders can be used to analyze a hyperspectral image using only unlabeled data. However, the high data dimensionality leads to prohibitive training times. In this regard, it is important to realize that the operations involved in autoencoders training are intrinsically parallel. Therefore, in this paper we present an approach that exploits multi-core and many-core devices in order to achieve efficient autoencoders training in hyperspectral imaging applications. Specifically, in this paper, we present new OpenMP and CUDA frameworks for autoencoder training. The obtained results show that the CUDA framework provides a speed-up of about two orders of magnitudes as compared to an optimized serial processing chain.


2019 ◽  
Vol 296 ◽  
pp. 126630 ◽  
Author(s):  
Pengcheng Nie ◽  
Jinnuo Zhang ◽  
Xuping Feng ◽  
Chenliang Yu ◽  
Yong He

Sign in / Sign up

Export Citation Format

Share Document