Study and Optimization of Piezoelectric Materials for MEMS Biochemical Sensor Applications

2021 ◽  
pp. 419-425
Author(s):  
M. J. Nagaraj ◽  
V. Shantha ◽  
N. Nishanth ◽  
V. Parthsarathy
Author(s):  
Christopher Green ◽  
Karla M. Mossi ◽  
Robert G. Bryant

Wireless sensors are an emerging technology that has the potential to revolutionize the monitoring of simple and complex physical systems. Prior research has shown that one of the biggest issues with wireless sensors is power management. A wireless sensor is simply not cost effective unless it can maintain long battery life or harvest energy from another source. Piezoelectric materials are viable conversion mechanisms because of their inherent ability to covert vibrations to electrical energy. Currently a wide variety of piezoelectric materials are available and the appropriate choice for sensing, actuating, or harvesting energy depends on their characteristics and properties. This study focuses on evaluating and comparing three different types of piezoelectric materials as energy harvesting devices. The materials utilized consisted on PZT 5A, a single crystal PMN 32%PT, and a PZT 5A composite called Thunder. These materials were subjected to a steady sinusoidal vibration provided by a shaker at different power levels. Gain of the devices was measured at all levels as well as impedance in a range of frequencies was characterized. Results showed that the piezoelectric generator coefficient, g33, predicts the overall power output of the materials as verified by the experiments. These results constitute a baseline for an energy harvesting system that will become the front end of a wireless sensor network.


Sensors ◽  
2014 ◽  
Vol 14 (3) ◽  
pp. 4585-4598 ◽  
Author(s):  
Amir Heidari ◽  
Yong-Jin Yoon ◽  
Woo-Tae Park ◽  
Pei-Chen Su ◽  
Jianmin Miao ◽  
...  

2017 ◽  
Vol 31 (31) ◽  
pp. 1750287
Author(s):  
Sherin Joseph ◽  
A. V. Ramesh Kumar ◽  
Reji John

Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I–V characteristics of the film was evaluated.


2015 ◽  
Vol 05 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Anuruddh Kumar ◽  
Anshul Sharma ◽  
Rajeev Kumar ◽  
Rahul Vaish ◽  
Vishal S Chauhan ◽  
...  

This paper examines the selection and performance evaluation of a variety of piezoelectric materials for cantilever-based sensor applications. The finite element analysis method is implemented to evaluate the relative importance of materials properties such as Young's Modulus (E), piezoelectric stress constants (e31), dielectric constant (ε) and Poisson's ratio (υ) for cantilever-based sensor applications. An analytic hierarchy process (AHP) is used to assign weights to the properties that are studied for the sensor structure under study. A technique for order preference by similarity to ideal solution (TOPSIS) is used to rank the performance of the piezoelectric materials in the context of sensor voltage outputs. The ranking achieved by the TOPSIS analysis is in good agreement with the results obtained from finite element method simulation. The numerical simulations show that K 0.5 Na 0.5 NbO 3– LiSbO 3 (KNN–LS) materials family is important for sensor application. Young's modulus (E) is most influencing material's property followed by piezoelectric constant (e31), dielectric constant (ε) and Poisson's ratio (υ) for cantilever-based piezoelectric sensor applications.


2012 ◽  
Vol 6 (4) ◽  
pp. 044111 ◽  
Author(s):  
M. Li ◽  
D.-P. Kim ◽  
G.-Y. Jeong ◽  
D.-K. Seo ◽  
C.-P. Park

Author(s):  
Martin Sobczyk ◽  
Sebastian Wiesenhütter ◽  
Jörg Rainer Noennig ◽  
Thomas Wallmersperger

Severe challenges such as depletion of natural resources, natural catastrophes, extreme weather conditions, or overpopulation require intelligent solutions especially in architecture. Built environments that are conceived from smart materials based on actuator and sensor functionality provide a promising approach in order to address this demand. The present paper reviews smart materials-based technologies which are currently applied or developed for application in civil structures, focusing on smart material applications for actuation or sensing. After giving a definition and categorization of smart materials, applications of the investigated materials (i.e. shape memory materials, electro- and magnetostrictive materials, piezoelectric materials, ionic polymer-metal composites, dielectrical elastomers, polyelectrolyte gels as well as magneto- and electrorheological fluids) are presented for the fields of architecture and civil engineering. While some materials are already highly advantageous in the application context, others still need further research in order to become applicable in real-world constructions. Nonetheless this review indicates their large innovation potential which should be consolidated by systematic research efforts in the near future.


2009 ◽  
Vol 94 (13) ◽  
pp. 133503 ◽  
Author(s):  
Sunghwan Kim ◽  
Jeongkug Lee ◽  
Heonsu Jeon ◽  
Hyo Jin Kim

Sign in / Sign up

Export Citation Format

Share Document