Statistical Evaluation of Wind Speed Data for Power Generation at Anyigba, Kogi State, Nigeria

Author(s):  
U. A. Saleh ◽  
Y. S. Haruna ◽  
Sani M. Isa ◽  
S. A. Jumaat
2020 ◽  
Vol 39 (3) ◽  
pp. 4059-4070
Author(s):  
Weina Ren ◽  
Chengdong Li ◽  
Peng Wen

As one kind of readily available renewable energy sources, wind is widely used in power generation where wind speed plays an important role. Generally speaking, we need to forecast the wind speed for improving the controllability of wind power generation. However, there exists considerable randomness and instabilities in wind speed data so that it is difficult to obtain accurate forecasting results. In this paper, we propose a novel fuzzy inference method based hybrid model for accurate wind speed forecasting. In this hybrid model, we adopt two strategies to enhance the estimation performance. On one hand, we propose the purification machine which utilize the Irregular Information Reduction Module (IIRM) and the Irrelevant Variable Reduction Module (IVRM) to reduce the randomness and instabilities of the data and to eliminate the variables with zero or negative effect in the wind speed time series. On the other hand, we adopt the developed Single-Input-Rule-Modules based Fuzzy Inference System (SIRM-FIS), the functionally weighted SIRM-FIS (FWSIRM-FIS) to realize the prediction of wind speed. This FWSIRM-FIS utilizes the multi-variable functional weights to dynamically measure the importance of the input variables so that the input-output mapping can be strengthened and more accurate forecasting results can be achieved. Furthermore, detailed experiments and comparisons are given. Experimental results demonstrate that the proposed FWSIRM-FIS and purification machine contributes greatly to deal with the randomness and instability in the wind speed data and yield more accurate forecasting results than those existing excellent forecasting models.


Erdkunde ◽  
2015 ◽  
Vol 69 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Julia Wagemann ◽  
Boris Thies ◽  
Rütger Rollenbeck ◽  
Thorsten Peters ◽  
Jörg Bendix

2021 ◽  
Vol 15 (1) ◽  
pp. 613-626
Author(s):  
Shahab S. Band ◽  
Sayed M. Bateni ◽  
Mansour Almazroui ◽  
Shahin Sajjadi ◽  
Kwok-wing Chau ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


2013 ◽  
Vol 2 (2) ◽  
pp. 69-74 ◽  
Author(s):  
A.K. Rajeevan ◽  
P.V. Shouri ◽  
Usha Nair

A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.


Sign in / Sign up

Export Citation Format

Share Document