CovidSORT: Detection of Novel COVID-19 in Chest X-ray Images by Leveraging Deep Transfer Learning Models

2021 ◽  
pp. 431-447
Author(s):  
Srikanth Tammina
2020 ◽  
Vol 28 (5) ◽  
pp. 841-850
Author(s):  
Saleh Albahli ◽  
Waleed Albattah

OBJECTIVE: This study aims to employ the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of novel coronavirus (COVID-19) infected disease. METHOD: This study applied transfer learning method to develop deep learning models for detecting COVID-19 disease. Three existing state-of-the-art deep learning models namely, Inception ResNetV2, InceptionNetV3 and NASNetLarge, were selected and fine-tuned to automatically detect and diagnose COVID-19 disease using chest X-ray images. A dataset involving 850 images with the confirmed COVID-19 disease, 500 images of community-acquired (non-COVID-19) pneumonia cases and 915 normal chest X-ray images was used in this study. RESULTS: Among the three models, InceptionNetV3 yielded the best performance with accuracy levels of 98.63% and 99.02% with and without using data augmentation in model training, respectively. All the performed networks tend to overfitting (with high training accuracy) when data augmentation is not used, this is due to the limited amount of image data used for training and validation. CONCLUSION: This study demonstrated that a deep transfer learning is feasible to detect COVID-19 disease automatically from chest X-ray by training the learning model with chest X-ray images mixed with COVID-19 patients, other pneumonia affected patients and people with healthy lungs, which may help doctors more effectively make their clinical decisions. The study also gives an insight to how transfer learning was used to automatically detect the COVID-19 disease. In future studies, as the amount of available dataset increases, different convolution neutral network models could be designed to achieve the goal more efficiently.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012078
Author(s):  
Pallavi R Mane ◽  
Rajat Shenoy ◽  
Ghanashyama Prabhu

Abstract COVID -19, is a deadly, dangerous and contagious disease caused by the novel corona virus. It is very important to detect COVID-19 infection accurately as quickly as possible to avoid the spreading. Deep learning methods can significantly improve the efficiency and accuracy of reading Chest X-Rays (CXRs). The existing Deep learning models with further fine tune provide cost effective, rapid, and better classification results. This paper tries to deploy well studied AI tools with modification on X-ray images to classify COVID 19. This research performs five experiments to classify COVID-19 CXRs from Normal and Viral Pneumonia CXRs using Convolutional Neural Networks (CNN). Four experiments were performed on state-of-the-art pre-trained models using transfer learning and one experiment was performed using a CNN designed from scratch. Dataset used for the experiments consists of chest X-Ray images from the Kaggle dataset and other publicly accessible sources. The data was split into three parts while 90% retained for training the models, 5% each was used in validation and testing of the constructed models. The four transfer learning models used were Inception, Xception, ResNet, and VGG19, that resulted in the test accuracies of 93.07%, 94.8%, 67.5%, and 91.1% respectively and our CNN model resulted in 94.6%.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ahmed I. Iskanderani ◽  
Ibrahim M. Mehedi ◽  
Abdulah Jeza Aljohani ◽  
Mohammad Shorfuzzaman ◽  
Farzana Akther ◽  
...  

The world has been facing the COVID-19 pandemic since December 2019. Timely and efficient diagnosis of COVID-19 suspected patients plays a significant role in medical treatment. The deep transfer learning-based automated COVID-19 diagnosis on chest X-ray is required to counter the COVID-19 outbreak. This work proposes a real-time Internet of Things (IoT) framework for early diagnosis of suspected COVID-19 patients by using ensemble deep transfer learning. The proposed framework offers real-time communication and diagnosis of COVID-19 suspected cases. The proposed IoT framework ensembles four deep learning models such as InceptionResNetV2, ResNet152V2, VGG16, and DenseNet201. The medical sensors are utilized to obtain the chest X-ray modalities and diagnose the infection by using the deep ensemble model stored on the cloud server. The proposed deep ensemble model is compared with six well-known transfer learning models over the chest X-ray dataset. Comparative analysis revealed that the proposed model can help radiologists to efficiently and timely diagnose the COVID-19 suspected patients.


2021 ◽  
Vol 11 (9) ◽  
pp. 4233
Author(s):  
Biprodip Pal ◽  
Debashis Gupta ◽  
Md. Rashed-Al-Mahfuz ◽  
Salem A. Alyami ◽  
Mohammad Ali Moni

The COVID-19 pandemic requires the rapid isolation of infected patients. Thus, high-sensitivity radiology images could be a key technique to diagnose patients besides the polymerase chain reaction approach. Deep learning algorithms are proposed in several studies to detect COVID-19 symptoms due to the success in chest radiography image classification, cost efficiency, lack of expert radiologists, and the need for faster processing in the pandemic area. Most of the promising algorithms proposed in different studies are based on pre-trained deep learning models. Such open-source models and lack of variation in the radiology image-capturing environment make the diagnosis system vulnerable to adversarial attacks such as fast gradient sign method (FGSM) attack. This study therefore explored the potential vulnerability of pre-trained convolutional neural network algorithms to the FGSM attack in terms of two frequently used models, VGG16 and Inception-v3. Firstly, we developed two transfer learning models for X-ray and CT image-based COVID-19 classification and analyzed the performance extensively in terms of accuracy, precision, recall, and AUC. Secondly, our study illustrates that misclassification can occur with a very minor perturbation magnitude, such as 0.009 and 0.003 for the FGSM attack in these models for X-ray and CT images, respectively, without any effect on the visual perceptibility of the perturbation. In addition, we demonstrated that successful FGSM attack can decrease the classification performance to 16.67% and 55.56% for X-ray images, as well as 36% and 40% in the case of CT images for VGG16 and Inception-v3, respectively, without any human-recognizable perturbation effects in the adversarial images. Finally, we analyzed that correct class probability of any test image which is supposed to be 1, can drop for both considered models and with increased perturbation; it can drop to 0.24 and 0.17 for the VGG16 model in cases of X-ray and CT images, respectively. Thus, despite the need for data sharing and automated diagnosis, practical deployment of such program requires more robustness.


Sign in / Sign up

Export Citation Format

Share Document