scholarly journals An Ensemble-based Approach by Fine-Tuning the Deep Transfer Learning Models to Classify Pneumonia from Chest X-Ray Images

Author(s):  
Sagar Kora Venu
2021 ◽  
Vol 29 (1) ◽  
pp. 19-36
Author(s):  
Çağín Polat ◽  
Onur Karaman ◽  
Ceren Karaman ◽  
Güney Korkmaz ◽  
Mehmet Can Balcı ◽  
...  

BACKGROUND: Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19 cases due to its easy accessibility, lower cost and rapid imaging time. OBJECTIVE: This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with the help of a developed deep convolutional neural network model (CNN) entitled nCoV-NET. METHODS: To train and to evaluate the performance of the developed model, three datasets were collected from resources of “ChestX-ray14”, “COVID-19 image data collection”, and “Chest X-ray collection from Indiana University,” respectively. Overall, 299 COVID-19 pneumonia cases and 1,522 non-COVID 19 cases are involved in this study. To overcome the probable bias due to the unbalanced cases in two classes of the datasets, ResNet, DenseNet, and VGG architectures were re-trained in the fine-tuning stage of the process to distinguish COVID-19 classes using a transfer learning method. Lastly, the optimized final nCoV-NET model was applied to the testing dataset to verify the performance of the proposed model. RESULTS: Although the performance parameters of all re-trained architectures were determined close to each other, the final nCOV-NET model optimized by using DenseNet-161 architecture in the transfer learning stage exhibits the highest performance for classification of COVID-19 cases with the accuracy of 97.1 %. The Activation Mapping method was used to create activation maps that highlights the crucial areas of the radiograph to improve causality and intelligibility. CONCLUSION: This study demonstrated that the proposed CNN model called nCoV-NET can be utilized for reliably detecting COVID-19 cases using chest X-ray images to accelerate the triaging and save critical time for disease control as well as assisting the radiologist to validate their initial diagnosis.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5813
Author(s):  
Muhammad Umair ◽  
Muhammad Shahbaz Khan ◽  
Fawad Ahmed ◽  
Fatmah Baothman ◽  
Fehaid Alqahtani ◽  
...  

The COVID-19 outbreak began in December 2019 and has dreadfully affected our lives since then. More than three million lives have been engulfed by this newest member of the corona virus family. With the emergence of continuously mutating variants of this virus, it is still indispensable to successfully diagnose the virus at early stages. Although the primary technique for the diagnosis is the PCR test, the non-contact methods utilizing the chest radiographs and CT scans are always preferred. Artificial intelligence, in this regard, plays an essential role in the early and accurate detection of COVID-19 using pulmonary images. In this research, a transfer learning technique with fine tuning was utilized for the detection and classification of COVID-19. Four pre-trained models i.e., VGG16, DenseNet-121, ResNet-50, and MobileNet were used. The aforementioned deep neural networks were trained using the dataset (available on Kaggle) of 7232 (COVID-19 and normal) chest X-ray images. An indigenous dataset of 450 chest X-ray images of Pakistani patients was collected and used for testing and prediction purposes. Various important parameters, e.g., recall, specificity, F1-score, precision, loss graphs, and confusion matrices were calculated to validate the accuracy of the models. The achieved accuracies of VGG16, ResNet-50, DenseNet-121, and MobileNet are 83.27%, 92.48%, 96.49%, and 96.48%, respectively. In order to display feature maps that depict the decomposition process of an input image into various filters, a visualization of the intermediate activations is performed. Finally, the Grad-CAM technique was applied to create class-specific heatmap images in order to highlight the features extracted in the X-ray images. Various optimizers were used for error minimization purposes. DenseNet-121 outperformed the other three models in terms of both accuracy and prediction.


2020 ◽  
Vol 10 (4) ◽  
pp. 213 ◽  
Author(s):  
Ki-Sun Lee ◽  
Jae Young Kim ◽  
Eun-tae Jeon ◽  
Won Suk Choi ◽  
Nan Hee Kim ◽  
...  

According to recent studies, patients with COVID-19 have different feature characteristics on chest X-ray (CXR) than those with other lung diseases. This study aimed at evaluating the layer depths and degree of fine-tuning on transfer learning with a deep convolutional neural network (CNN)-based COVID-19 screening in CXR to identify efficient transfer learning strategies. The CXR images used in this study were collected from publicly available repositories, and the collected images were classified into three classes: COVID-19, pneumonia, and normal. To evaluate the effect of layer depths of the same CNN architecture, CNNs called VGG-16 and VGG-19 were used as backbone networks. Then, each backbone network was trained with different degrees of fine-tuning and comparatively evaluated. The experimental results showed the highest AUC value to be 0.950 concerning COVID-19 classification in the experimental group of a fine-tuned with only 2/5 blocks of the VGG16 backbone network. In conclusion, in the classification of medical images with a limited number of data, a deeper layer depth may not guarantee better results. In addition, even if the same pre-trained CNN architecture is used, an appropriate degree of fine-tuning can help to build an efficient deep learning model.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8219
Author(s):  
Amin Ul Haq ◽  
Jian Ping Li ◽  
Sultan Ahmad ◽  
Shakir Khan ◽  
Mohammed Ali Alshara ◽  
...  

COVID-19 is a transferable disease that is also a leading cause of death for a large number of people worldwide. This disease, caused by SARS-CoV-2, spreads very rapidly and quickly affects the respiratory system of the human being. Therefore, it is necessary to diagnosis this disease at the early stage for proper treatment, recovery, and controlling the spread. The automatic diagnosis system is significantly necessary for COVID-19 detection. To diagnose COVID-19 from chest X-ray images, employing artificial intelligence techniques based methods are more effective and could correctly diagnosis it. The existing diagnosis methods of COVID-19 have the problem of lack of accuracy to diagnosis. To handle this problem we have proposed an efficient and accurate diagnosis model for COVID-19. In the proposed method, a two-dimensional Convolutional Neural Network (2DCNN) is designed for COVID-19 recognition employing chest X-ray images. Transfer learning (TL) pre-trained ResNet-50 model weight is transferred to the 2DCNN model to enhanced the training process of the 2DCNN model and fine-tuning with chest X-ray images data for final multi-classification to diagnose COVID-19. In addition, the data augmentation technique transformation (rotation) is used to increase the data set size for effective training of the R2DCNNMC model. The experimental results demonstrated that the proposed (R2DCNNMC) model obtained high accuracy and obtained 98.12% classification accuracy on CRD data set, and 99.45% classification accuracy on CXI data set as compared to baseline methods. This approach has a high performance and could be used for COVID-19 diagnosis in E-Healthcare systems.


2020 ◽  
Vol 28 (5) ◽  
pp. 841-850
Author(s):  
Saleh Albahli ◽  
Waleed Albattah

OBJECTIVE: This study aims to employ the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of novel coronavirus (COVID-19) infected disease. METHOD: This study applied transfer learning method to develop deep learning models for detecting COVID-19 disease. Three existing state-of-the-art deep learning models namely, Inception ResNetV2, InceptionNetV3 and NASNetLarge, were selected and fine-tuned to automatically detect and diagnose COVID-19 disease using chest X-ray images. A dataset involving 850 images with the confirmed COVID-19 disease, 500 images of community-acquired (non-COVID-19) pneumonia cases and 915 normal chest X-ray images was used in this study. RESULTS: Among the three models, InceptionNetV3 yielded the best performance with accuracy levels of 98.63% and 99.02% with and without using data augmentation in model training, respectively. All the performed networks tend to overfitting (with high training accuracy) when data augmentation is not used, this is due to the limited amount of image data used for training and validation. CONCLUSION: This study demonstrated that a deep transfer learning is feasible to detect COVID-19 disease automatically from chest X-ray by training the learning model with chest X-ray images mixed with COVID-19 patients, other pneumonia affected patients and people with healthy lungs, which may help doctors more effectively make their clinical decisions. The study also gives an insight to how transfer learning was used to automatically detect the COVID-19 disease. In future studies, as the amount of available dataset increases, different convolution neutral network models could be designed to achieve the goal more efficiently.


Mekatronika ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 19-24
Author(s):  
Amiir Haamzah Mohamed Ismail ◽  
Mohd Azraai Mohd Razman ◽  
Ismail Mohd Khairuddin ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
...  

X-ray is used in medical treatment as a method to diagnose the human body internally from diseases. Nevertheless, the development in machine learning technologies for pattern recognition have allowed machine learning of diagnosing diseases from chest X-ray images. One such diseases that are able to be detected by using X-ray is the COVID-19 coronavirus. This research investigates the diagnosis of COVID-19 through X-ray images by using transfer learning and fine-tuning of the fully connected layer. Next, hyperparameters such as dropout, p, number of neurons, and activation functions are investigated on which combinations of these hyperparameters will yield the highest classification accuracy model. InceptionV3 which is one of the common neural network is used for feature extraction from chest X-ray images. Subsequently, the loss and accuracy graphs are used to find the pipeline which performs the best in classification task. The findings in this research will open new possibilities in screening method for COVID-19.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012078
Author(s):  
Pallavi R Mane ◽  
Rajat Shenoy ◽  
Ghanashyama Prabhu

Abstract COVID -19, is a deadly, dangerous and contagious disease caused by the novel corona virus. It is very important to detect COVID-19 infection accurately as quickly as possible to avoid the spreading. Deep learning methods can significantly improve the efficiency and accuracy of reading Chest X-Rays (CXRs). The existing Deep learning models with further fine tune provide cost effective, rapid, and better classification results. This paper tries to deploy well studied AI tools with modification on X-ray images to classify COVID 19. This research performs five experiments to classify COVID-19 CXRs from Normal and Viral Pneumonia CXRs using Convolutional Neural Networks (CNN). Four experiments were performed on state-of-the-art pre-trained models using transfer learning and one experiment was performed using a CNN designed from scratch. Dataset used for the experiments consists of chest X-Ray images from the Kaggle dataset and other publicly accessible sources. The data was split into three parts while 90% retained for training the models, 5% each was used in validation and testing of the constructed models. The four transfer learning models used were Inception, Xception, ResNet, and VGG19, that resulted in the test accuracies of 93.07%, 94.8%, 67.5%, and 91.1% respectively and our CNN model resulted in 94.6%.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ahmed I. Iskanderani ◽  
Ibrahim M. Mehedi ◽  
Abdulah Jeza Aljohani ◽  
Mohammad Shorfuzzaman ◽  
Farzana Akther ◽  
...  

The world has been facing the COVID-19 pandemic since December 2019. Timely and efficient diagnosis of COVID-19 suspected patients plays a significant role in medical treatment. The deep transfer learning-based automated COVID-19 diagnosis on chest X-ray is required to counter the COVID-19 outbreak. This work proposes a real-time Internet of Things (IoT) framework for early diagnosis of suspected COVID-19 patients by using ensemble deep transfer learning. The proposed framework offers real-time communication and diagnosis of COVID-19 suspected cases. The proposed IoT framework ensembles four deep learning models such as InceptionResNetV2, ResNet152V2, VGG16, and DenseNet201. The medical sensors are utilized to obtain the chest X-ray modalities and diagnose the infection by using the deep ensemble model stored on the cloud server. The proposed deep ensemble model is compared with six well-known transfer learning models over the chest X-ray dataset. Comparative analysis revealed that the proposed model can help radiologists to efficiently and timely diagnose the COVID-19 suspected patients.


Sign in / Sign up

Export Citation Format

Share Document