An Overview of Potassium in Abiotic Stress: Emphasis on Potassium Transporters and Molecular Mechanism

Author(s):  
Alessandra Francini ◽  
Stefania Toscano ◽  
Daniela Romano ◽  
Antonio Ferrante
Author(s):  
Amit Kumar Pradhan ◽  
Mehzabin Rehman ◽  
Debanjali Saikia ◽  
Shabnoor Yeasrin Jyoti ◽  
Junu Poudel ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heqin Li ◽  
Haiwang Yue ◽  
Junliang Xie ◽  
Junzhou Bu ◽  
Li Li ◽  
...  

AbstractAbiotic stresses, including cold and drought, negatively affect maize (Zea mays L.) seed field emergence and later yield and quality. In order to reveal the molecular mechanism of maize seed resistance to abiotic stress at seed germination, the global transcriptome of high- vigour variety Zhongdi175 exposed to cold- and drought- stress was analyzed by RNA-seq. In the comparison between the control and different stressed sample, 12,299 differentially expressed genes (DEGs) were detected, of which 9605 and 7837 DEGs were identified under cold- and drought- stress, respectively. Functional annotation analysis suggested that stress response mediated by the pathways involving ribosome, phenylpropanoid biosynthesis and biosynthesis of secondary metabolites, among others. Of the obtained DEGs (12,299), 5,143 genes are common to cold- and drought- stress, at least 2248 TFs in 56 TF families were identified that are involved in cold and/or drought treatments during seed germination, including bHLH, NAC, MYB and WRKY families, which suggested that common mechanisms may be originated during maize seed germination in response to different abiotic stresses. This study will provide a better understanding of the molecular mechanism of response to abiotic stress during maize seed germination, and could be useful for cultivar improvement and breeding of high vigour maize cultivars.


2021 ◽  
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Abstract Seed germination is an important phase transitional period of angiosperm plants and sensitive to environment condition. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolyzation enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


Author(s):  
Selma Ríos-Meléndez ◽  
Emmanuel Valadez-Hernández ◽  
Claudio Delgadillo ◽  
Maria L. Luna-Guevara ◽  
Mario A. Martínez-Núñez ◽  
...  

Abstract Key message The moss Pseudocrossidium replicatum is a desiccation-tolerant species that uses an inducible system to withstand severe abiotic stress in both protonemal and gametophore tissues. Abstract Desiccation tolerance (DT) is the ability of cells to recover from an air-dried state. Here, the moss Pseudocrossidium replicatum was identified as a fully desiccation-tolerant (FDT) species. Its gametophores rapidly lost more than 90% of their water content when exposed to a low-humidity atmosphere [23% relative humidity (RH)], but abscisic acid (ABA) pretreatment diminished the final water loss after equilibrium was reached. P. replicatum gametophores maintained good maximum photosystem II (PSII) efficiency (Fv/Fm) for up to two hours during slow dehydration; however, ABA pretreatment induced a faster decrease in the Fv/Fm. ABA also induced a faster recovery of the Fv/Fm after rehydration. Protein synthesis inhibitor treatment before dehydration hampered the recovery of the Fv/Fm when the gametophores were rehydrated after desiccation, suggesting the presence of an inducible protective mechanism that is activated in response to abiotic stress. This observation was also supported by accumulation of soluble sugars in gametophores exposed to ABA or NaCl. Exogenous ABA treatment delayed the germination of P. replicatum spores and induced morphological changes in protonemal cells that resembled brachycytes. Transcriptome analyses revealed the presence of an inducible molecular mechanism in P. replicatum protonemata that was activated in response to dehydration. This study is the first RNA-Seq study of the protonemal tissues of an FDT moss. Our results suggest that P. replicatum is an FDT moss equipped with an inducible molecular response that prepares this species for severe abiotic stress and that ABA plays an important role in this response.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lei Yang ◽  
Juan Jin ◽  
Dingyu Fan ◽  
Qing Hao ◽  
Jianxin Niu

Heat stress (HS) is a common stress influencing the growth and reproduction of plant species. Jujube (Ziziphus jujuba Mill.) is an economically important tree with strong abiotic stress resistance, but the molecular mechanism of its response to HS remains elusive. In this study, we subjected seedlings of Z. jujuba cultivar “Hqing1-HR” to HS (45°C) for 0, 1, 3, 5, and 7 days, respectively, and collected the leaf samples (HR0, HR1, HR3, HR5, and HR7) accordingly. Fifteen cDNA libraries from leaves were constructed for transcriptomics assays. RNA sequencing and transcriptomics identified 1,642, 4,080, 5,160, and 2,119 differentially expressed genes (DEGs) in comparisons of HR1 vs. HR0, HR3 vs. HR0, HR5 vs. HR0, and HR7 vs. HR0, respectively. Gene ontology analyses of the DEGs from these comparisons revealed enrichment in a series of biological processes involved in stress responses, photosynthesis, and metabolism, suggesting that lowering or upregulating expression of these genes might play important roles in the response to HS. This study contributed to our understanding of the molecular mechanism of jujube response to HS and will be beneficial for developing jujube cultivars with improved heat resistance.


2007 ◽  
Vol 54 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Hong-Bo Shao ◽  
Qing-Jie Guo ◽  
Li-Ye Chu ◽  
Xi-Ning Zhao ◽  
Zhong-Liang Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document