Emerging Policy Concerns for Improving Input Use Efficiency in Agriculture for Global Food Security in South Asia

Author(s):  
Manjeet Kaur ◽  
Amit Guleria ◽  
Jasdev Singh ◽  
H. S. Kingra ◽  
Sukhpal Singh
2021 ◽  
Author(s):  
Jonathan Odilón Ojeda-Rivera ◽  
Gerardo Alejo-Jacuinde ◽  
Héctor-Rogelio Nájera-González ◽  
Damar López-Arredondo

Abstract Due to the importance of Phosphorus (P) on plant development and reproduction, global P security has emerged as a key factor towards global food security. Together with multiple agrochemicals, P-based fertilizers have become the pillars that sustain our food production systems. Therefore, improving the genetics and biology of key crops such as maize, rice, wheat and soybean to develop varieties better adapted to thrive under environments that present low phosphate (Pi) availability and that possess higher Pi-fertilizer use efficiency is imperative. In this review, we summarize the current understanding of Pi nutrition in plants, with particular focus on crops, and provide new perspectives on how to harness the ample repertoire of genetic mechanisms behind plant low-Pi adaptive responses that can be utilized to design smart low-Pi tolerant plants. We discuss on the potential of implementing more integrative, versatile and effective strategies by incorporating genome editing and synthetic biology approaches to reduce Pi-fertilizer input and enable global food security in a more sustainable way.


Author(s):  
Rabin Thapa ◽  
Nabin Bhusal

Rice (Oryza sativa L.) has been cultivated as an important cereal crop for more than 9,000 years and more than half of the world’s population depend on rice as it is their primary source of energy. Almost 30% of the current world cereal production is represented by the rice alone. It is estimated that the world’s population will reach 9.1 billion by 2050 i.e. 34 percent higher than today and for ensuring an ample amount of food and nutrition to such large population, global consumption of cereals will need to increase from 2.6 to 2.9 billion tonnes by 2027. On the other hand, the impacts of climate change in agriculture are expected to be negative, threatening the global food security. Besides, agriculture and global food security will be severely affected due to the COVID-19 pandemics as its after-effects are yet to be ascertained. The world needs an introduction of a new “Green revolution” in agriculture to increase crop production for food security and biofuel, because conventional breeding method have not brought much of gains not keeping its pace with the world population growth. Hence, the current study was done to review the various ongoing approaches and possible ways of designing a rice with enhanced productivity and photosynthetic capacity. One of the ways to increase yields, photosynthetic capacity accompanied by an increased Water Use Efficiency (WUE) and Nutrient Use Efficiency could be to introduce C4 traits into rice. Besides, genetic engineering using CRISPR-Cas9, molecular breeding, developing ideotype, heterosis breeding, developing apomictic rice, nitrogen fixing rice, use of nanotechnology as well as precision farming are the probable future approaches for designing a rice with high productivity. However, there are challenges and limitations in developing such rice and further research in this matter could help us get closer to developing the future rice.


2020 ◽  
Vol 1 (10) ◽  
pp. 134-141
Author(s):  
P. M. TARANOV ◽  
◽  
A. S. PANASYUK ◽  

The authors assess the prospects for solving the global food problem based on an analysis of the dynamics of food security indicators at the global and regional levels. The global food problem at work refers to the growing population of a planet affected by hunger and other forms of malnutrition. The food security situation has worsened for five years - in 2015–2019, and the COVID-19 pandemic has further exacerbated the food supply problem. The prevalence of moderate to severe food insecurity has affected more than 25% of the world's population. In lowincome countries, malnutrition affects more than 58% of the population. Food security is threatened by the consequences of the spread of coronavirus infection in the short term. In the medium and long term, climate change and the crisis in the governance of the world economy are the greatest threats. Modern international economic institutions are unable to withstand the prospect of declining global food security.


2021 ◽  
Vol 36 (5) ◽  
pp. 471
Author(s):  
Ralf Seppelt ◽  
Channing Arndt ◽  
Michael Beckmann ◽  
Emily A. Martin ◽  
Thomas W. Hertel

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 472
Author(s):  
Fabio Verneau ◽  
Mario Amato ◽  
Francesco La La Barbera

Starting in 2008 and lasting up until 2011, the crisis in agricultural and, in particular, cereal prices triggered a period of riots that spread from the Mediterranean basin to the rest of the world, reaching from Asia to Central America and the African continent. [...]


Sign in / Sign up

Export Citation Format

Share Document