Synthesis of Novel Multinuclear Complexes for Light-Harvesting Systems Using the Coupling Reactions with Ring-Shaped Multinuclear Re(I) Complexes as Building Blocks

2021 ◽  
pp. 85-102
Author(s):  
Yasuomi Yamazaki
2021 ◽  
Vol 7 (20) ◽  
pp. eabg1448
Author(s):  
Mingming Wang ◽  
Yang Song ◽  
Shuai Zhang ◽  
Xin Zhang ◽  
Xiaoli Cai ◽  
...  

Inspired by the formation of hierarchically structured natural biominerals (e.g., bone and tooth), various sequence-defined polymers have been synthesized and exploited for design and synthesis of functional hybrid materials. Here, we synthesized a series of organic-inorganic hybrid peptoids by using polyhedral oligomeric silsesquioxane (POSS) nanoclusters as side chains at a variety of backbone locations. We further demonstrated the use of these hybrid peptoids as sequence-defined building blocks to assemble a new class of programmable two-dimensional (2D) nanocrystals. They are highly stable and exhibit an enhanced mechanical property and electron scattering due to the incorporated POSS nanoclusters. By varying peptoid side-chain chemistry, we further demonstrated the precise displacement of a large variety of function groups within these 2D nanocrystals and developed a highly efficient aqueous light-harvesting system for live cell imaging. Because these 2D nanocrystals are biocompatible and highly programmable, we expect that they offer unique opportunities for applications.


Soft Matter ◽  
2021 ◽  
Author(s):  
Xinxian Ma ◽  
bo qiao ◽  
Jinlong Yue ◽  
JingJing Yu ◽  
yutao geng ◽  
...  

Based on a new designed acyl hydrazone gelator (G2), we developed an efficient energy transfer supramolecular organogel in glycol with two different hydrophobic fluorescent dyes rhodamine B (RhB) and acridine...


2021 ◽  
Vol 25 ◽  
Author(s):  
Maysa Ilamanova ◽  
Maxim Mastyugin ◽  
Christian Schäfer ◽  
Anne Kokel ◽  
Béla Török

: This account provides a broad overview of the application of solid metal catalysts in synthetic chemistry with a focus on the synthesis of medicinally important scaffolds or building blocks. Heterogeneous catalysis is a fundamental contributor to green or sustainable synthesis. Despite this, many synthetic chemists overwhelmingly focus on homogeneous methods, and due to their unfamiliarity with solid catalysts, many would not consider using them. The primary purpose of this work is to bring solid catalysts and their application possibilities to the attention of synthetic chemists in a format that focuses on reactions, thus building a bridge between the two sides for the benefit of sustainable applications and, eventually, the whole society. The two major parts of this account describe the common types of solid metal catalysts and the applications of these catalysts in sustainable synthesis. The first part gives an overview of the major types of solid metal catalysts, including common hydrogenation catalysts to metal nanoparticles. The second and more extensive part illustrates the use of these catalysts in a thematic order based on reaction types, including hydrogenation, hydrogenolysis, oxidation, metathesis, cross-coupling reactions, and hydroformylation.


2021 ◽  
Author(s):  
Kaiya Wang ◽  
Krishnasamy Velmurugan ◽  
Bin Li ◽  
Xiao-Yu Hu

Light-harvesting, which converts sunlight into chemical energy by natural systems such as plants, bacteria, is one of the most universal routine activities in nature. So far, various artificial light-harvesting systems...


Author(s):  
Genping Meng ◽  
Liping Zhen ◽  
Shihao Sun ◽  
Jun Hai ◽  
Zefan Zhang ◽  
...  

All-inorganic lead halide perovskites have attracted significant attention in artificial light-harvesting systems (ALHSs) due to their superior emission tunability and high light-absorption coefficients. However, their relatively low photoluminescence quantum yield...


2019 ◽  
Vol 116 (23) ◽  
pp. 11247-11252 ◽  
Author(s):  
Toru Kondo ◽  
Jesse B. Gordon ◽  
Alberta Pinnola ◽  
Luca Dall’Osto ◽  
Roberto Bassi ◽  
...  

Biological systems are subjected to continuous environmental fluctuations, and therefore, flexibility in the structure and function of their protein building blocks is essential for survival. Protein dynamics are often local conformational changes, which allows multiple dynamical processes to occur simultaneously and rapidly in individual proteins. Experiments often average over these dynamics and their multiplicity, preventing identification of the molecular origin and impact on biological function. Green plants survive under high light by quenching excess energy, and Light-Harvesting Complex Stress Related 1 (LHCSR1) is the protein responsible for quenching in moss. Here, we expand an analysis of the correlation function of the fluorescence lifetime by improving the estimation of the lifetime states and by developing a multicomponent model correlation function, and we apply this analysis at the single-molecule level. Through these advances, we resolve previously hidden rapid dynamics, including multiple parallel processes. By applying this technique to LHCSR1, we identify and quantitate parallel dynamics on hundreds of microseconds and tens of milliseconds timescales, likely at two quenching sites within the protein. These sites are individually controlled in response to fluctuations in sunlight, which provides robust regulation of the light-harvesting machinery. Considering our results in combination with previous structural, spectroscopic, and computational data, we propose specific pigments that serve as the quenching sites. These findings, therefore, provide a mechanistic basis for quenching, illustrating the ability of this method to uncover protein function.


Sign in / Sign up

Export Citation Format

Share Document