Influence of Oxygenated Fuel and Additives in Biofuel Run Compression Ignition Engine

Author(s):  
Debangsu Kashyap ◽  
Samar Das ◽  
Pankaj Kalita
Author(s):  
Naveen Kumar ◽  
Sidharth Bansal ◽  
Vipul Vibhanshu

India does not have large reserves of crude petroleum and spends a huge amount of foreign exchange for importing crude petroleum. The environmental degradation caused by burning of petroleum derived fuels is also causing an ecological imbalance. Research is carried world over on renewable fuels which could either be used as an extender or substitute to petroleum origin fuels and in this context alcohols such as ethanol and butanol have an immense potential. The earlier work on use of alcohols as a blend with diesel in the compression ignition engine has suggested reduction in emissions, however, problems such as phase separation and increase in fuel consumption has also been encountered while utilizing ethanol in diesel engines. To alleviate this problem, isobutanol has the potential to be used along with ethanol to make a homogenous blend without any phase separation and simultaneous advantage of alcohol being an oxygenated fuel which shall improve the combustion and reduce emission. The present study was carried out to explore the potential utilization of ethanol-isobutanol-diesel blends (containing up to 20% ethanol-isobutanol mixture in equal proportions) in compression ignition engine. Three blends were prepared having 5%, 10%, 20% ethanol-isobutanol mixtures respectively and calorific value, kinematic viscosity; specific gravity and density of blends were found to decrease with increase in ethanol-isobutanol percentage. The engine trial was conducted on an unmodified diesel engine to evaluate the performance and emission characteristics on ethanol-isobutanol-diesel blends and results were compared with baseline data of diesel. The results obtained from the engine trial suggested that brake thermal efficiency (BTE) increased and brake specific energy consumption (BSEC) decreased for the blends and considerable reduction in carbon monoxide (CO) and carbon dioxide (CO2) was observed with blends with a small increase in unburnt hydrocarbon (UBHC). The nitrogen oxide (NOx) and smoke emissions were also found to reduce for the ethanol-isobutanol-diesel blends.


Author(s):  
Naiara Lima Costa ◽  
Ramon Eduardo Pereira Silva ◽  
Letícia Schneider Ferrari

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Ameer Suhel ◽  
Norwazan Abdul Rahim ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Khairol Amali Bin Ahmad ◽  
Yew Heng Teoh ◽  
...  

In recent years, industries have been investing to develop a potential alternative fuel to substitute the depleting fossil fuels which emit noxious emissions. Present work investigated the effect of ferrous ferric oxide nano-additive on performance and emission parameters of compression ignition engine fuelled with chicken fat methyl ester blends. The nano-additive was included with various methyl ester blends at different ppm of 50, 100, and 150 through the ultrasonication process. Probe sonicator was utilized for nano-fuel preparation to inhibit the formation of agglomeration of nanoparticles in base fuel. Experimental results revealed that the addition of 100 ppm dosage of ferrous ferric oxide nanoparticles in blends significantly improves the combustion performance and substantially decrease the pernicious emissions of the engine. It is also found from an experimental results analysis that brake thermal efficiency (BTE) improved by 4.84%, a reduction in brake specific fuel consumption (BSFC) by 10.44%, brake specific energy consumption (BSEC) by 9.44%, exhaust gas temperature (EGT) by 19.47%, carbon monoxides (CO) by 53.22%, unburned hydrocarbon (UHC) by 21.73%, nitrogen oxides (NOx) by 15.39%, and smoke by 14.73% for the nano-fuel B20FFO100 blend. By seeing of analysis, it is concluded that the doping of ferrous ferric oxide nano-additive in chicken fat methyl ester blends shows an overall development in engine characteristics.


2021 ◽  
pp. 146808742110342
Author(s):  
Francisco Payri ◽  
Jaime Martín ◽  
Francisco José Arnau ◽  
Sushma Artham

In this work, the Global Energy Balance (GEB) of a 1.6 L compression ignition engine is analyzed during WLTC using a combination of experimental measurements and simulations, by means of a Virtual Engine. The energy split considers all the relevant energy terms at two starting temperatures (20°C and 7°C) and two altitudes (0 and 1000 m). It is shown that reducing ambient temperature from 20°C to −7°C decreases brake efficiency by 1% and increases fuel consumption by 4%, mainly because of the higher friction due to the higher oil viscosity, while the effect of increasing altitude 1000 m decreases brake efficiency by 0.8% and increases fuel consumption by 2.5% in the WLTC mainly due to the change in pumping. In addition, GEB shows that ambient temperature is affecting exhaust enthalpy by 4.5%, heat rejection to coolant by 2%, and heat accumulated in the block by 2.5%, while altitude does not show any remarkable variations other than pumping and break power.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4621
Author(s):  
P. A. Harari ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
T. M. Yunus Khan ◽  
Irfan Anjum Badruddin ◽  
...  

In the current work, an effort is made to study the influence of injection timing (IT) and injection duration (ID) of manifold injected fuels (MIF) in the reactivity controlled compression ignition (RCCI) engine. Compressed natural gas (CNG) and compressed biogas (CBG) are used as the MIF along with diesel and blends of Thevetia Peruviana methyl ester (TPME) are used as the direct injected fuels (DIF). The ITs of the MIF that were studied includes 45°ATDC, 50°ATDC, and 55°ATDC. Also, present study includes impact of various IDs of the MIF such as 3, 6, and 9 ms on RCCI mode of combustion. The complete experimental work is conducted at 75% of rated power. The results show that among the different ITs studied, the D+CNG mixture exhibits higher brake thermal efficiency (BTE), about 29.32% is observed at 50° ATDC IT, which is about 1.77, 3.58, 5.56, 7.51, and 8.54% higher than D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. The highest BTE, about 30.25%, is found for the D+CNG fuel combination at 6 ms ID, which is about 1.69, 3.48, 5.32%, 7.24, and 9.16% higher as compared with the D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. At all ITs and IDs, higher emissions of nitric oxide (NOx) along with lower emissions of smoke, carbon monoxide (CO), and hydrocarbon (HC) are found for D+CNG mixture as related to other fuel mixtures. At all ITs and IDs, D+CNG gives higher In-cylinder pressure (ICP) and heat release rate (HRR) as compared with other fuel combinations.


Sign in / Sign up

Export Citation Format

Share Document