Opposed-Piston Engine Potential: Low CO2 and Criteria Emissions

Author(s):  
Laurence J. Fromm ◽  
Fabien Redon ◽  
Ashwin Salvi
Keyword(s):  
Author(s):  
Lucas Melo Queiroz Barbosa ◽  
Lucas Tannús ◽  
Alexandre Zuquete Guarato

2021 ◽  
Author(s):  
Renate Weiß ◽  
Sebastian Gritsch ◽  
Günter Brader ◽  
Branislav Nikolic ◽  
Marc Spiller ◽  
...  

Development of novel, eco-friendly coating systems for application in lawn and turf management.


Author(s):  
Dibo Pan ◽  
Haijun Xu ◽  
Bolong Liu ◽  
Congnan Yang

The sealing characteristics of an annular power cylinder based on the Twin-rotor piston engine are studied, which provides a theoretical foundation for the sealing design of a new high-power density piston engine. In this paper, the basis thermodynamic realization process of an annular power cylinder is presented. The Runge Kutta equation is used to establish the coupled leakage model of adjacent working chambers under annular piston seal. And the sealing performance of the annular power cylinder is analyzed in detail. Moreover, the influence of rotor speed and compression ratio on the sealing characteristics and leakage is studied. Finally, some tests are carried out to verify the sealing principle and simulation results, which verifies the theoretical basis of simulation analysis. Results show that there are double pressure peaks in the leakage chamber between two working chambers, which is beneficial to reduce the leakage rate. Besides, increasing the speed and decreasing the compression ratio can help to reduce gas leakage. Furthermore, the effects of speed variation on the leakage are only significant when rotating at low speed. Changing the compression ratio has a greater effect on the slope of the leakage curve at a low compression ratio, and the lower the compression ratio, the better the sealing effect.


2021 ◽  
Vol 13 (15) ◽  
pp. 8237
Author(s):  
István Árpád ◽  
Judit T. Kiss ◽  
Gábor Bellér ◽  
Dénes Kocsis

The regulation of vehicular CO2 emissions determines the permissible emissions of vehicles in units of g CO2/km. However, these values only partially provide adequate information because they characterize only the vehicle but not the emission of the associated energy supply technology system. The energy needed for the motion of vehicles is generated in several ways by the energy industry, depending on how the vehicles are driven. These methods of energy generation consist of different series of energy source conversions, where the last technological step is the vehicle itself, and the result is the motion. In addition, sustainability characterization of vehicles cannot be determined by the vehicle’s CO2 emissions alone because it is a more complex notion. The new approach investigates the entire energy technology system associated with the generation of motion, which of course includes the vehicle. The total CO2 emissions and the resulting energy efficiency have been determined. For this, it was necessary to systematize (collect) the energy supply technology lines of the vehicles. The emission results are not given in g CO2/km but in g CO2/J, which is defined in the paper. This new method is complementary to the European Union regulative one, but it allows more complex evaluations of sustainability. The calculations were performed based on Hungarian data. Finally, using the resulting energy efficiency values, the emission results were evaluated by constructing a sustainability matrix similar to the risk matrix. If only the vehicle is investigated, low CO2 emissions can be achieved with vehicles using internal combustion engines. However, taking into consideration present technologies, in terms of sustainability, the spread of electric-only vehicles using renewable energies can result in improvement in the future. This proposal was supported by the combined analysis of the energy-specific CO2 emissions and the energy efficiency of vehicles with different power-driven systems.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3530
Author(s):  
Fukang Ma ◽  
Shuanlu Zhang ◽  
Zhenfeng Zhao ◽  
Yifang Wang

The hydraulic free-piston engine (HFPE) is a kind of hybrid-powered machine which combines the reciprocating piston-type internal combustion engine and the plunger pump as a whole. In recent years, the HFPE has been investigated by a number of research groups worldwide due to its potential advantages of high efficiency, energy savings, reduced emissions and multi-fuel operation. Therefore, our study aimed to assess the operating characteristics, core questions and research progress of HFPEs via a systematic review and meta-analysis. We included operational control, starting characteristics, misfire characteristics, in-cylinder working processes and operating stability. We conducted the literature search using electronic databases. The research on HFPEs has mainly concentrated on four kinds of free-piston engine, according to piston arrangement form: single piston, dual pistons, opposed pistons and four-cylinder complex configuration. HFPE research in China is mainly conducted in Zhejiang University, Tianjin University, Jilin University and the Beijing Institute of Technology. In addition, in China, research has mainly focused on the in-cylinder combustion process while a piston is free by considering in-cylinder combustion machinery and piston dynamics. Regarding future research, it is very important that we solve the instabilities brought about by chance fluctuations in the combustion process, which will involve the hydraulic system’s efficiency, the cyclical variation, the method of predicting instability and the recovery after instability.


Sign in / Sign up

Export Citation Format

Share Document