INJECTION SYSTEM ANALYSIS FOR A VARIABLE COMPRESSION ROTARY-PISTON ENGINE

Author(s):  
Lucas Melo Queiroz Barbosa ◽  
Lucas Tannús ◽  
Alexandre Zuquete Guarato
2020 ◽  
Vol 181 (2) ◽  
pp. 11-18
Author(s):  
Mariusz CHWIST ◽  
Michał GRUCA ◽  
Michał PYRC ◽  
Magdalena SZWAJA

The article presents results of investigation on the combustion of a mixture of oil from pyrolysis of tires and basic fuel in an internal combustion reciprocating piston engine. The tested fuel consisted of: diesel oil and oil from pyrolysis of tires at amount of 10% by volume. The tests were carried out on a single-cylinder naturally aspirated compression-ignition engine. The engine is equipped with a common rail fuel injection system and an electronic control unit that allows changing injection timing. A comparative analysis of pressure-volume charts for the reference fuel, which was diesel, and for a mixture of diesel with the addition of 10% oil from tire pyrolysis was carried out during the study. Injector characteristics for the reference fuel and the mixture were determined. Engine efficiency for both fuels was determined. Unrepeatability of the engine work cycles for the diesel fuel and the tested mixture was calculated. Finally, the share of toxic exhaust components in exhaust gases was analyzed. It was found that pyrolisys oil from tires can be used as additive to regular diesel fuel at amount up to 10%, however, toxic exhaust gases emission was increased.


2015 ◽  
Vol 779 ◽  
pp. 187-191
Author(s):  
Hao Ling Ren ◽  
Tian Liang Lin ◽  
Hai Bo Xie

The poor scavenging process of the hydraulic free piston engine which uses two-stroke engine as its driver was presented. A two-cylinder, four-stroke diesel engine was proposed to drive the single-piston hydraulic free piston engine to improve the scavenging process. The intake and release valves mechanism and fuel injection system were redesigned to adapt the performance of the single-piston hydraulic free piston engine. Feasibility and reliability of this new structure are verified through simulation.


2013 ◽  
Vol 765-767 ◽  
pp. 57-61 ◽  
Author(s):  
Lian Jun Cheng ◽  
Ji Peng Zhang ◽  
Wei Huo ◽  
Tie Zhu Zhang

Hydraulic Confined Piston Engine (HCPE) is a new type of internal combustion engine which can directly convert thermal energy into hydraulic energy. Power system of the six-cylinder HCPE is studied in this paper. The power system model is built; the power system analysis and design are carried through. The new type of crank connecting rod mechanism is proposed in the six-cylinder HCPE. Fitting-curves of movement, force, and torque for the key parts are drawn to provide theoretical support for the prototype of the six-cylinder HCPE.


Author(s):  
Paul E. Yelvington ◽  
R. Paul Roth ◽  
Robert E. Mayo ◽  
Andrew L. Carpenter ◽  
Jerald G. Wagner

Oxygen-enriched combustion (OEC) is used in industrial combustion applications to increase the adiabatic flame temperature. OEC has also been studied previously as a means to increase the efficiency, power density, and low-quality fuel compatibility of internal combustion engines, including diesels. Although oxygen-enriched air can be produced in a number of ways, membrane air separating is the preferred method. Under this program, a high-flux membrane was experimentally tested for this application. A small-displacement (200 cm3), single-cylinder diesel engine was also modified for OEC. The modifications included development of a custom electronic fuel injection system and changes to the inlet manifold to dynamically change the oxygen concentration in the combustion air. Membrane testing, engine dynamometer testing, and system analysis demonstrated that current air-separation membranes require excessive parasitic losses for improvement of power density and efficiency. However, OEC can enable the use of low ignition-quality fuels. OEC was also observed to decrease carbon monoxide (CO) and smoke emissions, although nitrogen oxide (NOx) emissions were observed to increase. Transient testing was also performed; a membrane-based OEC system was shown to respond to step changes in engine load with an acceptable time response.


Author(s):  
AK Antonopoulos ◽  
RG Papagiannakis ◽  
DT Hountalas

The performance characteristics of an aircraft piston engine are affected mainly by the air–fuel mixture quality (i.e. condition of the fuel injection system) and by the spark timing and spark duration (i.e. condition of ignition system). Thus, the present work focuses on investigating the effect of both fuel injection and spark ignition systems on performance characteristics of two aircraft piston engines which are of the same type but have overhauled by two different workshops. The investigation is conducted by applying an existing diagnostic technique, which is based on the simultaneous recording and processing of two electric signals: one corresponding to cylinder pressure and the second corresponding to the ignition system. The basic characteristics of the proposed methodology are simplicity and field applicability on engines of this type. A detailed experimental investigation has been conducted on the aforementioned two aircraft piston engines on a dedicated test bench. From the results, it is revealed that the proposed diagnostic methodology provides reliable information for the effect of both the ignition and fuel injection systems on engine performance characteristics. The results derived from the specific work enable the comparative evaluation of the engines and their ignition and fuel injection systems. Finally, based on this first investigation, the proposed methodology seems to be promising, because it can be easily applied on any type of spark-ignited engine and especially on aircraft piston engine, where due to its geometry and multicylinder nature, the application of lab techniques on the field is, if not impossible, extremely difficult.


2005 ◽  
Author(s):  
K. L. Calvin ◽  
Gail R. Casper ◽  
Ben-Tzion Karsh ◽  
Patricia F. Brennan ◽  
Laura J. Burke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document