Optimization-Related Studies on the Operational Parameters of Friction Stir Welding: An Overview

Author(s):  
Manish Kumar Singh ◽  
Rajesh Kumar Porwal ◽  
Sanjay Mishra
Author(s):  
Youliang He ◽  
Paul R. Dawson ◽  
Donald E. Boyce

The evolution of voids (damage) in friction stir welding processes was simulated using a void growth model that incorporates viscoplastic flow and strain hardening of incompressible materials during plastic deformation. The void growth rate is expressed as a function of the void volume fraction, the effective deformation rate, and the ratio of the mean stress to the strength of the material. A steady-state Eulerian finite element formulation was employed to calculate the flow and thermal fields in three dimensions, and the evolution of the strength and damage was evaluated by integrating the evolution equations along the streamlines obtained in the Eulerian configuration. The distribution of internal voids within the material was qualitatively compared with experimental results, and a good agreement was observed in terms of the spatial location of voids. The effects of pin geometry and operational parameters such as tool rotational and travel speeds on the evolution of damage were also examined.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Author(s):  
Daniela Lohwasser ◽  
Zhan Chen

2019 ◽  
Vol 2019 (2) ◽  
pp. 13-18 ◽  
Author(s):  
A.G. Poklyatsky ◽  
◽  
S.I. Motrunich ◽  

Sign in / Sign up

Export Citation Format

Share Document