A New Fixed-Wing Formation Control Algorithm

Author(s):  
Xu Zeng ◽  
Xinhua Wang ◽  
Weicheng Xu ◽  
Yu Zheng ◽  
Jiahuan Li
2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


Author(s):  
Jih-Sien Peng ◽  
Yen-Chen Liu

Abstract Utilizing multiple small-sized automated guided vehicles (AGVs) in cooperatively transport large and heavy objects in manufacturing factories or logistics is an emerging research direction. Flexibility and efficiency can be enhanced by using multi-AGV comparing to a large AGV with higher capacity especially in clutter environments. In this paper, a multi-AGV system by using Mecanum wheels to provide omnidirectional movement is proposed for cooperative transportation. Accordingly, the proposed Mecanum-wheeled automated guided vehicles (MWAGVs) composed of Mecanum wheels and a rotary platform provides not only non-constrained movement but also planar displacement for allowance of distance errors. In the proposed MWAGVs, the formation control with fixed geometry during operation is significant especially with unknown object information, dynamic uncertainties, and external disturbances. Therefore, the passivity-based adaptive synchronizing control algorithm is developed to ensure stability and tracking performance with uncertain dynamic parameters. Simulations and Experiments show the efficacy of designed Mecanum-wheeled AGV.


Author(s):  
Akira Okamoto ◽  
Dean B. Edwards

Various control algorithms have been developed for fleets of autonomous vehicles. Many of the successful control algorithms in practice are behavior-based control or nonlinear control algorithms, which makes analyzing their stability difficult. At the same time, many system theoretic approaches for controlling a fleet of vehicles have also been developed. These approaches usually use very simple vehicle models such as particles or point-mass systems and have only one coordinate system which allows stability to be proven. Since most of the practical vehicle models are six-degree-of-freedom systems defined relative to a body-fixed coordinate system, it is difficult to apply these algorithms in practice. In this paper, we consider a formation regulation problem as opposed to a formation control problem. In a formation control problem, convergence of a formation from random positions and orientations is considered, and it may need a scheme to integrate multiple moving coordinates. On the contrary, in a formation regulation problem, it is not necessary since small perturbations from the nominal condition, in which the vehicles are in formation, are considered. A common origin is also not necessary if the relative distance to neighbors or a leader is used for regulation. Under these circumstances, the system theoretic control algorithms are applicable to a formation regulation problem where the vehicle models have six degrees of freedom. We will use a realistic six-degree-of-freedom model and investigate stability of a fleet using results from decentralized control theory. We will show that the leader-follower control algorithm does not have any unstable fixed modes if the followers are able to measure distance to the leader. We also show that the leader-follower control algorithm has fixed modes at the origin, indicating that the formation is marginally stable, when the relative distance measurements are not available. Multi-vehicle simulations are performed using a hybrid leader-follower control algorithm where each vehicle is given a desired trajectory to follow and adjusts its velocity to maintain a prescribed distance to the leader. Each vehicle is modeled as a three-degree-of-freedom system to investigate the vehicle’s motion in a horizontal plane. The examples show efficacy of the analysis.


2017 ◽  
Vol 64 (6) ◽  
pp. 4984-4993 ◽  
Author(s):  
Shen Yin ◽  
Hongyan Yang ◽  
Okyay Kaynak

2013 ◽  
Vol 25 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Mohammad Fadhil Bin Abas ◽  
◽  
Dwi Pebrianti ◽  
Syaril Azrad Md. Ali ◽  
Daisuke Iwakura ◽  
...  

This paper describes the leader-follower formation control using two different approaches which are the PID leader-follower formation control (PID-LFFC) and Sliding Mode Control leader-follower formation control (SMC-LFFC). The strategy used in this paper is to apply the control algorithm for conducting a circular motion. This task is known to be important since a trajectory is a combination of movement. This movement can be divided into straight or curve lines. Curves lines or circular motion is essential for obstacle avoidance and also for turning movement. The curves lines or circular motion gives lower trajectory distance than only using straight or angled lines. Based on the experimental result, it is seen that the performance of the algorithm is reliable. When using SMC-LFFC over the PID-LFFC, the leader to follower distance error is 30% smaller and has a high 70% occurrence at 0 errors. Additionally, this research is known to be the first conducted in Japan.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Long Qin ◽  
Yabing Zha ◽  
Quanjun Yin ◽  
Yong Peng

Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions.


Author(s):  
Liangming Chen ◽  
Zhongqi Sun ◽  
Chuanjiang Li ◽  
Baolong Zhu ◽  
Cheng Wang

This paper studies the affine formation control problem for a group of flying satellites with the performance of obstacle avoidance. Assuming that leader satellites can detect the locations of obstacles, we first investigate how to plan advisable trajectories for leader satellites such that they can smoothly pass through some specific types of obstacles by tracking the planned trajectories. Secondly, to enable follower satellites pass through the obstacles by following leader satellites' moving trajectories, a relationship between leader satellites' positions and follower satellites' desired positions is established by employing the affine formation approach. Then, a distributed formation control algorithm is proposed, which ensures all follower satellites converge to their desired positions. Moreover, the uncertainties and disturbances are considered in each satellite's motion dynamics, and are compensated by the designed adaptive laws. Finally, simulation examples are provided to validate the effectiveness of the proposed control algorithms.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986273 ◽  
Author(s):  
Nguyen Xuan-Mung ◽  
Sung Kyung Hong

The formation control problem for multi-agent systems has been explored in recent years. However, controlling a formation of multiple aerial vehicles in the presence of disturbances has been a challenge for control researchers. To deal with this issue, a robust adaptive formation control algorithm for a group of multiple quadcopters is proposed. A nonlinear model of the dynamics of the formation error is obtained based on a leader–follower scheme. This model considers both the relative position in the x– y plane and the relative heading angle between vehicles in the presence of uncertainties. In addition, by means of a model reference control approach, a robust adaptive formation controller is used to steer the vehicles into a formation pattern and have them maintain the formation shape. Numerical simulations demonstrate the effectiveness of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document