scholarly journals An Unfrozen Water Retention Curve for Capturing Soil Density and Specific Surface Effects

Author(s):  
Jiwen Zhang ◽  
Qingyi Mu
2011 ◽  
Vol 47 (6) ◽  
Author(s):  
Augustus C. Resurreccion ◽  
Per Moldrup ◽  
Markus Tuller ◽  
T. P. A. Ferré ◽  
Ken Kawamoto ◽  
...  

2020 ◽  
Vol 195 ◽  
pp. 02018
Author(s):  
Jiwen Zhang ◽  
Qingyi Mu ◽  
Hongjian Liao ◽  
Jie Cao

Unfrozen water retention curve (UWRC) defines the relationship between temperature and unfrozen water content in frozen soils. Although many models have been proposed for the UWRC, these existing models cannot predict UWRC well over a wide temperatures range. In this study, a new UWRC model is proposed with explicit considerations of both capillarity and adsorption. In this model, capillarity is considered dominating when the freezing of soil pore water at higher temperatures (above -2oC), whereas the effects of adsorption pronounce at temperatures below -2oC. Moreover, effects of void ratio on the freezing of capillary water are incorporated. The proposed model was applied to predict UWRCs of silt and clay at different initial void ratios over a wide temperature range (from -50 to 0oC). Predicted results by this new model are compared with predictions by three well-known existing models. The new model can capture the density effects on UWRC. Moreover, the new model can predict better UWRC over a wide temperature range since it explicitly considers both effects of capillarity and adsorption.


2017 ◽  
Vol 16 (4) ◽  
pp. 869-877
Author(s):  
Vasile Lucian Pavel ◽  
Florian Statescu ◽  
Dorin Cotiu.ca-Zauca ◽  
Gabriela Biali ◽  
Paula Cojocaru

Pedosphere ◽  
2006 ◽  
Vol 16 (2) ◽  
pp. 137-146 ◽  
Author(s):  
Guan-Hua HUANG ◽  
Ren-Duo ZHANG ◽  
Quan-Zhong HUANG

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yan Gao ◽  
Kai Chang ◽  
Xuguang Xing ◽  
Jiaping Liang ◽  
Nian He ◽  
...  

PurposeTraditional laboratory measurements of soil water diffusivity (D) and soil water retention curve (SWRC) are always time-consuming and labor-intensive. Therefore, this paper aims to present a simple and robust test method for determining D and SWRC without reducing accuracy.Design/methodology/approachIn this study, a D model of unsaturated soil was established based on Gardner–Russo model and then a combination of Gardner–Russo model with one-dimensional horizontal absorption method to obtain n and a parameters of Gardner–Russo model. One-dimensional horizontal absorption experiments on loam, silt loam and sandy clay loam were conducted to obtain the relationships between measured infiltration rate and cumulative infiltration with wetting front distance. Based on the obtained relationships, the measured infiltration data from the one-dimensional horizontal absorption tests were used to calculate n and a parameters and further constructing D and SWRC.FindingsBoth the calculated D and SWRC inversed from the infiltration data were in good agreement with the measured ones that obtained from the traditional horizontal absorption method and the centrifuge method, respectively. Error analysis indicated that only the infiltration data are enough to reliably synchronously determine D and SWRC.Originality/valueA simple and robust method is proposed for synchronous determination of soil water diffusivity and water retention curve.


2015 ◽  
Vol 68 (2) ◽  
pp. 207-213
Author(s):  
Luciana Portugal Menezes ◽  
Waldyr Lopes Oliveira Filho ◽  
Cláudio Henrique Carvalho Silva

AbstractReliable measurements of the Soil Water Retention Curve, SWRC, are necessary for solving unsaturated flow problems. In this sense, a method to obtain the SWRC of a silty sand using a flow pump, as well as details about procedures and some results, are herein presented. The overall conclusion is that the new method is very convenient, fully automated, and produces reliable results in a fast and easy way, making the technique very promising.


Sign in / Sign up

Export Citation Format

Share Document