Approximate Modeling of Gear Torque of Permanent Magnet Synchronous Motor Based on Improved Latin Hypercube Sampling

Author(s):  
Xuerong Ye ◽  
Liqin Wu ◽  
Chengzhi Sun ◽  
Lin Wang ◽  
Jun Zhang
2020 ◽  
Vol 10 (9) ◽  
pp. 3235 ◽  
Author(s):  
Soo-Whang Baek ◽  
Sang Wook Lee

In this study, a shape design optimization method is proposed to improve the efficiency of a 3 kW permanent magnet synchronous motor (PMSM) used in an electric compressor intended for use in an electric vehicle. The proposed method improves the efficiency performance of the electric compressor by improving the torque characteristics of the initial PMSM model. The dimensions of the rotor were set as the design variables and were chosen to maximize efficiency and reduce cogging torque. During the determination of the design points with conventional Latin hypercube design, the experimental points may be closely related to each other. Therefore, the optimal Latin hypercube design was used to optimally distribute the experimental points evenly and improve the space filling characteristics. The Kriging model was used as an interpolation model to predict the optimal values of the design variables. This allowed the formulation of more accurate prediction models with multiple design variables, complex reactions, or nonlinearities. A genetic algorithm was used to identify the optimal solution for the design variables. It was used to satisfy the objective function and to determine the optimal design variables based on established constraints. The optimal design results obtained based on the proposed shape optimization method were confirmed by finite element analyses. For practical verification, the optimal model of the prototype PMSM of an electric compressor was manufactured, and a 1.5% improvement in its efficiency performance was confirmed based on an experimental dynamometer test.


2006 ◽  
Vol 126 (12) ◽  
pp. 1722-1729 ◽  
Author(s):  
Akeshi Takahashi ◽  
Haruo Koharagi ◽  
Satoshi Kikuchi ◽  
Kazumasa Ide ◽  
Kazuo Shima

2011 ◽  
Vol 131 (8) ◽  
pp. 1029-1035 ◽  
Author(s):  
Ryoichi Takahata ◽  
Shinichi Wakui ◽  
Kenji Miyata ◽  
Keiji Noma ◽  
Masaharu Senoo

2018 ◽  
Vol 138 (9) ◽  
pp. 730-738
Author(s):  
Ryoichi Takahata ◽  
Shinichi Wakui ◽  
Kenji Miyata ◽  
Keiji Noma ◽  
Masaharu Senoo

Sign in / Sign up

Export Citation Format

Share Document