Prey capture by Luciocephalus pulcher: implications for models of jaw protrusion in teleost fishes

1981 ◽  
Vol 6 (3-4) ◽  
pp. 257-268 ◽  
Author(s):  
George V. Lauder ◽  
Karel F. Liem
2008 ◽  
Vol 5 (29) ◽  
pp. 1445-1457 ◽  
Author(s):  
Roi Holzman ◽  
Steven W Day ◽  
Rita S Mehta ◽  
Peter C Wainwright

The ability to protrude the jaws during prey capture is a hallmark of teleost fishes, widely recognized as one of the most significant innovations in their diverse and mechanically complex skull. An elaborated jaw protrusion mechanism has independently evolved multiple times in bony fishes, and is a conspicuous feature in several of their most spectacular radiations, ultimately being found in about half of the approximately 30 000 living species. Variation in jaw protrusion distance and speed is thought to have facilitated the remarkable trophic diversity found across fish groups, although the mechanical consequences of jaw protrusion for aquatic feeding performance remain unclear. Using a hydrodynamic approach, we show that rapid protrusion of the jaws towards the prey, coupled with the spatial pattern of the flow in front of the mouth, accelerates the water around the prey. Jaw protrusion provides an independent source of acceleration from that induced by the unsteady flow at the mouth aperture, increasing by up to 35% the total force exerted on attached, escaping and free-floating passive prey. Despite initiating the strike further away, fishes can increase peak force on their prey by protruding their jaws towards it, compared with a ‘non-protruding’ state, where the distance to prey remains constant throughout the strike. The force requirements for capturing aquatic prey might have served as a selective factor for the evolution of jaw protrusion in modern fishes.


Author(s):  
Christopher M. Martinez ◽  
Angelly J. Tovar ◽  
Peter C. Wainwright

The intramandibular joint (IMJ) is a secondary point of movement between the two major bones of the lower jaw. It has independently evolved in several groups of teleost fishes, each time representing a departure from related species in which the mandible functions as a single structure rotating only at the quadratomandibular joint (QMJ). In this study, we examine kinematic consequences of the IMJ novelty in a freshwater characiform fish, the herbivorous Distichodus sexfasciatus. We combine traditional kinematic approaches with trajectory-based analysis of motion shapes to compare patterns of prey capture movements during substrate biting, the fish's native feeding mode, and suction of prey from the water column. We find that the IMJ enables complex jaw motions and contributes to feeding versatility by allowing the fish to modulate its kinematics in response to different prey and to various scenarios of jaw-substrate interaction. Implications of the IMJ include context-dependent movements of lower versus upper jaws, enhanced lower jaw protrusion, and the ability to maintain contact between the teeth and substrate throughout the jaw closing or biting phase of the motion. The IMJ in D. sexfasciatus appears to be an adaptation for removing attached benthic prey, consistent with its function in other groups that have evolved the joint. This study builds on our understanding of the role of the IMJ during prey capture and provides insights into broader implications of the innovative trait.


2001 ◽  
Vol 204 (17) ◽  
pp. 3039-3051 ◽  
Author(s):  
Peter C. Wainwright ◽  
Lara A. Ferry-Graham ◽  
Thomas B. Waltzek ◽  
Andrew M. Carroll ◽  
C. Darrin Hulsey ◽  
...  

SUMMARYWe characterized prey-capture strategies in seven species of cichlid fishes representing diverse trophic habits and anticipated feeding abilities. The species examined were Petenia splendida, Cichla ocellaris, Cichlasoma minckleyi, Astronotus ocellatus, Crenicichla geayi, Heros severus (formerly Cichlasoma severum) and Cyprichromis leptosoma. Three individuals per species were filmed with video at 500Hz as they captured live adult Artemia sp. and Poecilia reticulata. For each feeding sequence, we measured the contribution of predator movement towards the prey (i.e. ram) and the movement of prey towards the predator due to suction. The use of ram differed significantly among prey types and predator species, varying as much as sixfold across predator species. High values of ram resulted in high attack velocities. Jaw protrusion contributed as much as 50% to overall ram values in some species, verifying its role in enhancing attack velocity. Suction distance did not vary significantly among species. Diversity in prey-capture behavior was therefore found to reflect differences among species in the strategy used to approach prey. Limited variation in the distance from which prey were sucked into the mouth is interpreted as the result of an expected exponential decline in water velocity with distance from the mouth of the suction-feeding predator. We propose that this relationship represents a major constraint on the distance over which suction feeding is effective for all aquatic-feeding predators.


2012 ◽  
Vol 215 (9) ◽  
pp. 1456-1463 ◽  
Author(s):  
K. L. Staab ◽  
R. Holzman ◽  
L. P. Hernandez ◽  
P. C. Wainwright

1993 ◽  
Vol 180 (1) ◽  
pp. 209-227 ◽  
Author(s):  
P. C. Wainwright ◽  
R. G. Turingan

Teleost fishes typically capture prey with the oral jaws and perform most types of prey- processing behavior with the pharyngeal jaw apparatus. In these fishes, the motor patterns associated with the different stages of feeding are quite distinct, and fish can modify muscle activity patterns when feeding on different prey. We examined motor pattern variation in the queen triggerfish, Balistes vetula, a versatile predator that both captures and processes prey with its oral jaws. During feeding on three prey that differed in hardness and elusiveness, three distinct patterns of behavior could be identified on the basis of patterns of muscle activity: prey capture, buccal manipulation and blowing. During prey capture by suction feeding, the retractor arcus palatini muscle (RAP) commenced activity before the levator operculi muscle (LOP). In both buccal manipulation and blowing, the RAP began activity well after the onset of activity in the LOP. Both prey capture and buccal manipulation motor patterns varied when fish fed on different prey. When capturing hard-shelled and non-elusive prey, B. vetula did not employ suction feeding but, instead, the fish directly bit parts of its prey. The motor pattern exhibited during direct biting to capture prey was different from that during suction feeding, but was indistinguishable from the pattern seen during the repeated cycles of buccal manipulation. Harder prey elicited significantly longer bursts of activity in the jaw adductor muscles than did soft prey. In spite of the involvement of the oral jaws in virtually all stages of feeding, B. vetula shows levels of variation between patterns of behavior and types of prey characteristic of previously studied teleost fishes. Thus, the coupling of capture and processing behavior patterns in the repertoire of the oral jaws does not appear to constrain the behavioral versatility of this species.


1997 ◽  
Vol 200 (22) ◽  
pp. 2841-2859 ◽  
Author(s):  
A Gibb

The kinematics of prey capture in two bilaterally asymmetrical pleuronectiform flatfish species (Pleuronichthys verticalis and Xystreurys liolepis) and two symmetrical percomorph species (Lepomis macrochirus, a centrarchid, and Cheilinus digrammus, a labrid) were compared to test the hypothesis that flatfish have distinct prey-capture kinematics from those quantified for other percomorph fishes. Size-matched individuals of both flatfish species were video-taped feeding using a high-speed video system. Cephalic displacement and timing variables were quantified and compared with data from similarly sized L. macrochirus and C. digrammus previously collected by other researchers using similar experimental methodology. Nested multivariate analyses of variance indicated that there was no significant difference in prey-capture kinematics between flatfish and non-flatfish taxa, but that prey-capture kinematics did differ among the four taxa. Multiple nested analyses of variance revealed that the taxa differed in 7 of 11 kinematic variables. Post-hoc tests and comparisons with other fish taxa suggest that individuals of P. verticalis possess an unusual combination of prey-capture kinematics including large hyoid depression, large neurocranial rotation, large upper jaw protrusion and small gape. Previous research has suggested that this combination of traits is associated with suction-based prey capture. Correspondingly, the ram­suction index calculated for P. verticalis is more negative (indicating a greater use of suction) than that calculated for the other taxa. When homologous kinematic variables are compared across these four taxa, flatfish do not appear to have similar prey-capture kinematics. However, both flatfish species are distinct from the two symmetrical percomorph species in their asymmetrical jaw movements.


1998 ◽  
Vol 201 (9) ◽  
pp. 1345-1358 ◽  
Author(s):  
C Wilga ◽  
P Motta

Changes in the feeding mechanism with feeding behavior were investigated using high-speed video and electromyography to examine the kinematics and motor pattern of prey capture, manipulation and transport in the spiny dogfish Squalus acanthias (Squalidae: Squaliformes). In this study, Squalus acanthias used both suction and ram behaviors to capture and manipulate prey, while only suction was used to transport prey. The basic kinematic feeding sequence observed in other aquatic-feeding lower vertebrates is conserved in the spiny dogfish. Prey capture, bite manipulation and suction transport events are characterized by a common pattern of head movements and motor activity, but are distinguishable by differences in duration and relative timing. In general, capture events are longer in duration than manipulation and transport events, as found in other aquatic-feeding lower vertebrates. Numerous individual effects were found, indicating that individual sharks are capable of varying head movements and motor activity among successful feeding events. Upper jaw protrusion in the spiny dogfish is not restricted by its orbitostylic jaw suspension; rather, the upper jaw is protruded by 30 % of its head length, considerably more than in the lemon shark Negaprion brevirostris (Carcharhinidae: Carcharhiniformes) (18 %) with its hyostylic jaw suspension. One function of upper jaw protrusion is to assist in jaw closure by protruding the upper jaw as well as elevating the lower jaw to close the gape, thus decreasing the time to jaw closure. The mechanism of upper jaw protrusion was found to differ between squaliform and carcharhiniform sharks. Whereas the levator palatoquadrati muscle assists in retracting the upper jaw in the spiny dogfish, it assists in protruding the upper jaw in the lemon shark. This study represents the first comprehensive electromyographic and kinematic analysis of the feeding mechanism in a squaliform shark.


Copeia ◽  
1984 ◽  
Vol 1984 (1) ◽  
pp. 1 ◽  
Author(s):  
Philip Jay Motta

1984 ◽  
Vol 113 (1) ◽  
pp. 143-150 ◽  
Author(s):  
GEORGE V. LAUDER ◽  
BRIAN D. CLARK

Water flow into the mouth cavity during suction feeding in centrarchid sunfishes was studied by mapping the trajectories of small particles in the water during prey capture. In Lepomis, a circulation develops as the mouth opens, and water is drawn into the mouth from above, below and in front of the head. Water displaced by movement of the body as the prey is approached during the strike is entrained into the circulation towards the mouth. The parcel of water sucked into the mouth has a diameter approximately one-tenth that of the predator's length.


Sign in / Sign up

Export Citation Format

Share Document