scholarly journals COUPLED VERSUS UNCOUPLED FUNCTIONAL SYSTEMS: MOTOR PLASTICITY IN THE QUEEN TRIGGERFISH BALISTES VETULA

1993 ◽  
Vol 180 (1) ◽  
pp. 209-227 ◽  
Author(s):  
P. C. Wainwright ◽  
R. G. Turingan

Teleost fishes typically capture prey with the oral jaws and perform most types of prey- processing behavior with the pharyngeal jaw apparatus. In these fishes, the motor patterns associated with the different stages of feeding are quite distinct, and fish can modify muscle activity patterns when feeding on different prey. We examined motor pattern variation in the queen triggerfish, Balistes vetula, a versatile predator that both captures and processes prey with its oral jaws. During feeding on three prey that differed in hardness and elusiveness, three distinct patterns of behavior could be identified on the basis of patterns of muscle activity: prey capture, buccal manipulation and blowing. During prey capture by suction feeding, the retractor arcus palatini muscle (RAP) commenced activity before the levator operculi muscle (LOP). In both buccal manipulation and blowing, the RAP began activity well after the onset of activity in the LOP. Both prey capture and buccal manipulation motor patterns varied when fish fed on different prey. When capturing hard-shelled and non-elusive prey, B. vetula did not employ suction feeding but, instead, the fish directly bit parts of its prey. The motor pattern exhibited during direct biting to capture prey was different from that during suction feeding, but was indistinguishable from the pattern seen during the repeated cycles of buccal manipulation. Harder prey elicited significantly longer bursts of activity in the jaw adductor muscles than did soft prey. In spite of the involvement of the oral jaws in virtually all stages of feeding, B. vetula shows levels of variation between patterns of behavior and types of prey characteristic of previously studied teleost fishes. Thus, the coupling of capture and processing behavior patterns in the repertoire of the oral jaws does not appear to constrain the behavioral versatility of this species.

1989 ◽  
Vol 141 (1) ◽  
pp. 359-375 ◽  
Author(s):  
PETER C. WAINWRIGHT

This study examines patterns of variation in 15 electromyographic (EMG) variables measured from recordings of pharyngeal jaw muscle activity during prey processing in four species of the perciform fish family Haemulidae. Two questions were of primary interest. (1) Are motor patterns conserved across the four species? (2) Do the fishes alter (modulate) muscle activity patterns when feeding on different prey types? The experimental design used allowed the partitioning of variance in EMG variables among species, among individuals within species, among days within individuals, among feedings within days, and among prey types. Only one variable exhibited a significant species effect, indicating that the four species used virtually the same motor pattern during prey processing. In response to three prey types differing in hardness, all four species demonstrated an ability to modulate several EMG variables that characterized the intensity of electrical activity. However, variables characterizing the relative timing of muscle activities were not influenced by prey type. A significant variance component was found among recording days and, together with the possibility of variation among experimental preparations, this raises questions about the extent of previously reported inter-individual variation in EMGs. These results support a growing data base on aquatic feeding in lower vertebrates which finds that: (1) motor patterns tend to be highly conserved among closely related taxa; (2) the ability to modulate motor patterns in response to different prey types appears to be a general property of teleost fish feeding mechanisms; and (3) variation in experimental EMG data is ubiquitous and, when unaccounted for, confounds comparisons among treatment groups.


1997 ◽  
Vol 200 (1) ◽  
pp. 101-115 ◽  
Author(s):  
A Herrel ◽  
J Cleuren ◽  
F Vree

The activity of jaw and hyolingual muscles during the entire feeding sequence is examined in the lizard Agama stellio, with special focus on the intraoral transport and swallowing stages. Correlation of electromyography (EMG) data with kinematics shows that the kinematic phases (slow opening, SO; fast opening, FO; fast closing, FC; slow closing/power stroke, SC/PS) are characterised by distinct activities in the jaw and hyolingual muscles. The SO phase is clearly the result of tongue protraction (upon protraction, the tongue is pulled against the prey and consequently the lower jaw is pushed down), whereas the FO phase is caused by activity in the jaw opener and dorsal cervical muscles. Both the FC and SC/PS phases are characterised by pronounced activity in the jaw adductor muscles. Tongue retraction is produced by activity in the hyoid and tongue retractor muscles. A quantitative analysis of time-related EMG data shows that, in accordance with the kinematic analyses, three different stages can be recognised as components of the feeding cycle: prey capture, intraoral transport and swallowing. However, analysis of intensity-related data allowed a fourth stage, crushing, to be detected. Whereas there are indications that prey capture, intraoral transport and swallowing are controlled by different motor patterns, the differences between crushing and transport are likely to be caused by feedback mechanisms. Our results show the importance of including intensity-related data in quantitative analyses of EMG recordings in order to discriminate between feeding stages. Additionally, it is shown that both the jaw and the hyolingual muscles play crucial roles during feeding. During all stages, movements of the hyolingual apparatus are an essential part of the feeding cycle. Thus, when examining lizard feeding mechanisms, the activity patterns of the hyolingual muscles should not be neglected.


2000 ◽  
Vol 203 (20) ◽  
pp. 3161-3176 ◽  
Author(s):  
J.R. Grubich

This study explores the evolution of molluscivory in the marine teleost family Sciaenidae by comparing the motor activity patterns of the pharyngeal muscles of two closely related taxa, the molluscivorous black drum (Pogonias cromis) and the generalist red drum (Sciaenops ocellatus). Muscle activity patterns were recorded simultaneously from eight pharyngeal muscles. Electromyographic (EMG) activity was recorded during feeding on three prey types that varied in shell hardness. Canonical variate and discriminant function analyses were used to describe the distinctness of drum pharyngeal processing behaviors. Discriminant functions built of EMG timing variables were more accurate than muscle activity intensity at identifying cycles by prey type and species. Both drum species demonstrated the ability to modulate pharyngeal motor patterns in response to prey hardness. The mean motor patterns and the canonical variate space of crushing behavior indicated that black drum employed a novel motor pattern during molluscivory. The mollusc-crushing motor pattern of black drum is different from other neoteleost pharyngeal behaviors in lacking upper jaw retraction by the retractor dorsalis muscle. This functional modification suggests that crushing hard-shelled marine bivalves requires a ‘vice-like’ compression bite in contrast to the shearing forces that are applied to weaker-shelled fiddler crabs by red drum and to freshwater snails by redear sunfish.


2002 ◽  
Vol 205 (17) ◽  
pp. 2591-2603 ◽  
Author(s):  
Eric D. Tytell ◽  
George V. Lauder

SUMMARYThe fast-start escape response is the primary reflexive escape mechanism in a wide phylogenetic range of fishes. To add detail to previously reported novel muscle activity patterns during the escape response of the bichir, Polypterus, we analyzed escape kinematics and muscle activity patterns in Polypterus senegalus using high-speed video and electromyography (EMG). Five fish were filmed at 250 Hz while synchronously recording white muscle activity at five sites on both sides of the body simultaneously (10 sites in total). Body wave speed and center of mass velocity, acceleration and curvature were calculated from digitized outlines. Six EMG variables per channel were also measured to characterize the motor pattern. P. senegalus shows a wide range of activity patterns, from very strong responses, in which the head often touched the tail, to very weak responses. This variation in strength is significantly correlated with the stimulus and is mechanically driven by changes in stage 1 muscle activity duration. Besides these changes in duration, the stage 1 muscle activity is unusual because it has strong bilateral activity, although the observed contralateral activity is significantly weaker and shorter in duration than ipsilateral activity. Bilateral activity may stiffen the body, but it does so by a constant amount over the variation we observed; therefore, P. senegalus does not modulate fast-start wave speed by changing body stiffness. Escape responses almost always have stage 2 contralateral muscle activity, often only in the anterior third of the body. The magnitude of the stage 2 activity is the primary predictor of final escape velocity.


2000 ◽  
Vol 203 (7) ◽  
pp. 1241-1252 ◽  
Author(s):  
B.C. Jayne ◽  
M.W. Daggy

Although lateral axial bending is widespread for the locomotion of ectothermic vertebrates, the axial motor patterns of terrestrial taxa are known only for a limited number of species and behaviors. Furthermore, the extent to which the trunk and tail of ectothermic tetrapods have similar motor patterns is poorly documented. We therefore recorded the activity of the epaxial muscles in the trunk and tail of sand-swimming Mojave fringe-toed lizards (Uma scoparia) to determine whether this specialized behavior has features of the motor pattern that differ from those of diverse ectothermic vertebrates. Muscle activity during initial sand-swimming was a standing-wave pattern in the trunk and tail. Next, the hind limbs moved alternately and the caudofemoralis muscles and nearby axial muscle in the trunk and tail had similar long-duration electromyographic bursts, whereas the anterior trunk had shorter, more frequent electromyographic bursts. The final tail burial involved a traveling wave of posteriorly propagated axial muscle activity within localized regions of the tail. With increased temperature (from 22 to 40 degrees C), the mean frequencies of axial oscillations increased from approximately 7 to 21 Hz, and the greatest value (33 Hz) was nearly twice the maximal limb cycling frequency during running. The mean burial time at the lowest temperature (3.8 s) was nearly twice that for a 10 degrees C higher temperature. For the axial electromyograms, a decrease in temperature of 18 degrees C more than doubled the electromyographic and cycle durations, whereas the duty factors and intersegmental phase lags changed only slightly with temperature.


1997 ◽  
Vol 200 (13) ◽  
pp. 1881-1893 ◽  
Author(s):  
M Westneat ◽  
J Walker

Labriform locomotion is a widespread swimming mechanism in fishes during which propulsive forces are generated by oscillating the pectoral fins. We examined the activity of the six major muscles that power the pectoral fin of the bird wrasse Gomphosus varius (Labridae: Perciformes). The muscles studied included the fin abductors (arrector ventralis, abductor superficialis and abductor profundus) and the fin adductors (arrector dorsalis, adductor superficialis and adductor profundus). Our goals were to determine the pattern of muscle activity that drives the fins in abduction and adduction cycles during pectoral fin locomotion, to examine changes in the timing and amplitude of electromyographic (EMG) patterns with increases in swimming speed and to correlate EMG patterns with the kinematics of pectoral fin propulsion. EMG data were recorded from three individuals over a range of swimming speeds from 15 to 70 cm s-1 (1­4.8 TL s-1, where TL is total body length). The basic motor pattern of pectoral propulsion is alternating activity of the antagonist abductor and adductor groups. The downstroke is characterized by activity of the arrector ventralis muscle before the other abductors, whereas the upstroke involves nearly synchronous activity of the three adductors. Most EMG variables (duration, onset time, amplitude and integrated area) showed significant correlations with swimming speeds. However, the timing and duration of muscle activity are relatively constant across speeds when expressed as a fraction of the stride period, which decreases with increased velocity. Synchronous recordings of kinematic data (maximal abduction and adduction) with EMG data revealed that activity in the abductors began after maximal adduction and that activity in the adductors began nearly synchronously with maximal abduction. Thus, the pectoral fin mechanism of G. varius is activated by positive work from both abductor and adductor muscle groups over most of the range of swimming speeds. The adductors produce some negative work only at the highest swimming velocities. We combine information from pectoral fin morphology, swimming kinematics and motor patterns to interpret the musculoskeletal mechanism of pectoral propulsion in labrid fishes.


1992 ◽  
Vol 168 (1) ◽  
pp. 1-21 ◽  
Author(s):  
PETER C. WAINWRIGHT ◽  
ALBERT F. BENNETT

In this paper we document the activity of key muscles of the tongue, hyobranchial apparatus and head during prey capture in the lizard Chamaeleo jacksonii Boulenger and use these data to test current hypotheses of chameleon tongue function. Electromyographic recordings were made during 27 feedings from nine individuals and synchronized with high-speed video recordings (200 fields s−1), permitting an assessment of the activity of muscles relative to the onset of tongue projection, contact between tongue and prey, and tongue retraction. Four major results were obtained. (1) The hyoglossi muscles exhibit a single burst of activity that begins between 10 ms before and 20 ms after the onset of tongue projection and continues throughout the period of tongue retraction. (2) The accelerator muscle exhibits a biphasic activity pattern, with the first burst lasting about 185 ms and ending an average of 10.6 ms prior to the onset of projection. (3) The accelerator muscle shows regional variation in morphology that corresponds with variation in motor pattern. The anterior region of the muscle, unlike the posterior portion, exhibits only a single burst of activity that begins 2.5 ms after the onset of tongue projection and is thus not involved in launching the tongue. (4) The geniohyoidei, sternohyoidei, sternothyroidei, depressor mandibulae, adductor mandibulae and pterygoideus all exhibit activity patterns consistent with previously reported kinematic patterns and their proposed roles. The major implications of these results for models of the chameleon feeding mechanism are (1) that the hyoglossi do not act to hold the tongue on the entoglossal process during a loading period prior to tongue projection, and (2) that the presence of 185 ms of intense activity in the accelerator muscle prior to tongue projection suggests the presence of a preloading mechanism, the nature of which is the subject of the companion paper.


2000 ◽  
Vol 203 (18) ◽  
pp. 2781-2796 ◽  
Author(s):  
C.D. Wilga ◽  
P.J. Motta

This study investigates the motor pattern and head movements during feeding of a durophagus shark, the bonnethead Sphyrna tiburo, using electromyography and simultaneous high-speed video. Sphyrna tiburo feeds almost exclusively on hard-shelled crabs, with shrimp and fish taken occasionally. It captures crabs by ram feeding, then processes or reduces the prey by crushing it between molariform teeth, finally transporting the prey by suction for swallowing. The prey-crushing mechanism is distinct from that of ram or bite capture and suction transport. This crushing mechanism is accomplished by altering the duration of jaw adductor muscle activity and modifying jaw kinematics by the addition of a second jaw-closing phase. In crushing events, motor activity of the jaw adductor muscles continues (biting of the prey occurs as the jaws close and continues after the jaws have closed) throughout a second jaw-closing phase, unlike capture and transport events during which motor activity (biting) ceases at jaw closure. Sphyrna tiburo is able to take advantage of a resource (hard prey) that is not readily available to most sharks by utilizing a suite of durophagous characteristics: molariform teeth, a modified jaw protrusor muscle, altered jaw adductor activity and modified jaw kinematics. Sphyrna tiburo is a specialist feeder on crab prey as demonstrated by the lack of differences in kinematic or motor patterns when offered prey of differing hardness and its apparent lack of ability to modulate its behavior when feeding on other prey. Functional patterns are altered and coupled with modifications in dental and jaw morphology to produce diverse crushing behaviors in elasmobranchs.


2004 ◽  
Vol 91 (5) ◽  
pp. 2380-2384 ◽  
Author(s):  
Paul S. G. Stein ◽  
Susan Daniels-McQueen

Agonist motor neurons usually alternate between activity and quiescence during normal rhythmic behavior; antagonist motor neurons are usually active during agonist motor neuron quiescence. During an antagonist deletion, a naturally occurring motor-pattern variation, there is no antagonist activity and no quiescence between successive bursts of agonist activity. Motor neuron recordings of normal fictive rostral scratching in the turtle displayed rhythmic alternation between activity and quiescence for hip flexors, knee flexors, and knee extensors. Knee-flexor activity occurred during knee-extensor quiescence. During a hip-extensor deletion, a variation of rostral scratching, rhythmic hip-flexor bursts occurred without intervening hip-flexor quiescence. There were 3 distinct patterns of knee motor activity during the cycle before or after a hip-extensor deletion. In most cycles, there was knee flexor-extensor rhythmic alternation. In some cycles, termed knee-flexor deletions, there was no knee-flexor activity and rhythmic knee-extensor bursts occurred without intervening knee-extensor quiescence. In other cycles, termed knee-extensor deletions, there was no knee-extensor activity and rhythmic knee-flexor bursts occurred without intervening knee-flexor quiescence. The concept of a module refers to a population of motor neurons and interneurons with similar activity patterns; interneurons in a module coordinate agonist and antagonist motor neuron activities, either with excitation of agonist motor neurons and interneurons, or with inhibition of antagonist motor neurons and interneurons. Previous studies of hip-extensor deletions support the concept of a rhythmogenic hip-flexor module. The knee-related deletions described here support the concept of rhythmogenic knee-flexor and knee-extensor modules linked by reciprocal inhibition.


Sign in / Sign up

Export Citation Format

Share Document