Fatigue tests and life prediction of 16 Mn steel butt welds without crack-like defect

1994 ◽  
Vol 68 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Zheng Xiulin ◽  
L� Baotong ◽  
Cui Tianxie ◽  
L� Xiaoyan ◽  
Lin Chao
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


2011 ◽  
pp. 511-519
Author(s):  
H von Selle ◽  
O Doerk ◽  
J Kang ◽  
J Kim

Author(s):  
Sean B. Leen ◽  
Aditya Deshpande ◽  
Thomas H. Hyde

This paper describes high temperature cyclic and creep relaxation testing and modeling of a high nickel-chromium material (XN40F) for application to the life prediction of superplastic forming (SPF) tools. An experimental test program to characterize the high temperature cyclic elastic-plastic-creep behavior of the material over a range of temperatures between 20°C and 900°C is described. The objective of the material testing is the development of a high temperature material model for cyclic analyses and life prediction of SPF dies for SPF of titanium aerospace components. A two-layer viscoplasticity model, which combines both creep and combined isotropic-kinematic plasticity, is chosen to represent the material behavior. The process of material constant identification for this model is presented, and the predicted results are compared with the rate-dependent (isothermal) experimental results. The temperature-dependent material model is furthermore applied to simulative thermomechanical fatigue tests, designed to represent the temperature and stress-strain cycling associated with the most damaging phase of the die cycle. The model is shown to give good correlation with the test data, thus vindicating future application of the material model in thermomechanical analyses of SPF dies for distortion and life prediction.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1194
Author(s):  
Rafael Tobajas ◽  
Daniel Elduque ◽  
Elena Ibarz ◽  
Carlos Javierre ◽  
Luis Gracia

Most of the mechanical components manufactured in rubber materials experience fluctuating loads, which cause material fatigue, significantly reducing their life. Different models have been used to approach this problem. However, most of them just provide life prediction only valid for each of the specific studied material and type of specimen used for the experimental testing. This work focuses on the development of a new generalized model of multiaxial fatigue for rubber materials, introducing a multiparameter variable to improve fatigue life prediction by considering simultaneously relevant information concerning stresses, strains, and strain energies. The model is verified through its correlation with several published fatigue tests for different rubber materials. The proposed model has been compared with more than 20 different parameters used in the specialized literature, calculating the value of the R2 coefficient by comparing the predicted values of every model, with the experimental ones. The obtained results show a significant improvement in the fatigue life prediction. The proposed model does not aim to be a universal and definitive approach for elastomer fatigue, but it provides a reliable general tool that can be used for processing data obtained from experimental tests carried out under different conditions.


1990 ◽  
Vol 112 (1) ◽  
pp. 68-79 ◽  
Author(s):  
D. A. Boismier ◽  
Huseyin Sehitoglu

Isothermal fatigue tests, out-of-phase and in-phase thermo-mechanical fatigue tests were performed on Mar-M247 nickel-based superalloy. The experiments were conducted in the temperature range 500°C to 871°C. Results indicate that the lives differ with strain-temperature phasing and with strain rate. The results of out-of-phase thermo-mechanical tests correspond well with strain-life data of isothermal tests conducted at the peak temperature (871°C). However, the in-phase thermo-mechanical results differed depending on the strain amplitude. Significant surface and crack tip oxidation and gamma prime depletion has been observed based on metallographic and Auger Spectroscopic analyses. These changes were measured as a function of time. The environment induced changes significantly influenced the fatigue lives in isothermal and out-of-phase thermo-mechanical fatigue cases. In these cases transgranular cracking was observed. Grain boundary crack nucleation and grain boundary crack growth dominated the in-phase thermo-mechanical fatigue cases. Based on these observations the requirements for a life prediction model are outlined. The life prediction model and the predictions are given in Part 2 of this paper.


Author(s):  
Yukio Takahashi

Treatment of stress multiaxiality in fatigue assessment is practically important in many components subjected to cyclic loading during their operation. Based on the results of fatigue tests on hollow and solid bar specimens of SUS316NG and SGV410 under various combinations of axial and torsional stresses, accuracy of fatigue life prediction based on the conventional parameters as well as a two parameter approach newly proposed here was studied. The conventional parameters tended to provide conservative prediction of the failure life for shear-dominated cases especially for SUS316NG while the new approach was able to give more realistic prediction of failure lives.


2016 ◽  
Vol 40 (2) ◽  
pp. 777-787 ◽  
Author(s):  
A. García de la Yedra ◽  
J. L. Pedrejón ◽  
A. Martín-Meizoso ◽  
R. Rodríguez

2007 ◽  
Vol 353-358 ◽  
pp. 190-194
Author(s):  
Nian Jin Chen ◽  
Zeng Liang Gao ◽  
Wei Zhang ◽  
Yue Bao Le

The law of low-cycle fatigue with hold time at elevated temperature is investigated in this paper. A new life prediction model for the situation of fatigue and creep interaction is developed, based on the damage due to fatigue and creep. In order to verify the prediction model, strain-controlled low-cycle fatigue tests at temperature 693K, 823K and 873K and fatigue tests with various hold time at temperature 823K and 873K for 316L austenitic stainless steel were carried out. Good agreement is found between the predictions and experimental results.


1992 ◽  
Vol 114 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Q. Guo ◽  
E. C. Cutiongco ◽  
L. M. Keer ◽  
M. E. Fine

Isothermal and thermomechanical fatigue of 63Sn/37Pb solder is studied under total strain-controlled tests. A standard definition of failure is proposed to allow inter-laboratory comparison. Based on the suggested failure criterion, load drop per cycle, the Young’s modulus and the ratio of the maximum tensile to maximum compressive stresses remain constant, and the fatigue response of the solder is stable before failure, although cyclic softening was observed from the beginning. Experimental results of isothermal fatigue tests for a total strain range from 0.3 to 3 percent show that the log-log plot of the number of cycles to failure versus the plastic strain range has a kink at the point where the elastic strain is approximately equal to the plastic strain. In this paper, it is shown how the isothermal fatigue life of near-eutectic solder at lower strain ranges can be predicted by using the experimental data of fatigue tests at high strain ranges and early stage information of a fatigue test at the strain range in question. A thermomechanical fatigue life prediction is also given based on a dislocation pile-up model. Comparison with experimental results shows a good agreement.


Author(s):  
Jinjun Zhang ◽  
Kuang Liu ◽  
Aditi Chattopadhyay

This article presents the fatigue life prediction in a cruciform specimen of 2024-T351 aluminum alloy subjected to biaxial FALSTAFF loading. An energy- and slip-based multiscale damage criterion is developed to capture the fatigue crack formation in crystalline metallic materials. In these materials, there are two stages in crack initiation: nucleation of micro cracks and coalescence of micro cracks into major cracks. In the first stage, micro cracks generate from intermetallic particles and extend into surrounding grains. For the FCC crystalline structure, fatigue damage increments in four dependent slip planes are calculated and accumulated to measure micro crack. In the second stage, the micro cracks grow and coalesce into major cracks. Subsequently, a meso-statistical volume element model is developed to represent the microstructure of the material. Finally, a root mean square method is introduced to take into account FALSTAFF loading. Using the root mean square (RMS) method, the loading history for tests is analyzed to determine the RMS maximum and minimum stresses. The multiscale damage criterion, statistical volume element and RMS method were validated using previously conducted fatigue tests on cruciform samples. The fatigue life and crack direction predicted using the developed model correlate well with the experiments.


Sign in / Sign up

Export Citation Format

Share Document