The efficiency of electron transfer from QA ? to the donor side of Photosystem II decreases during induction of photosynthesis: Evidences from chlorophyll fluorescence and photoacoustic techniques

1996 ◽  
Vol 47 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Nikolai G. Bukhov ◽  
Robert Carpentier
1989 ◽  
Vol 238 (1291) ◽  
pp. 127-136

A hypothetical model for the structure and function of photosystem II is proposed that attempts to incorporate different phenomena related to the variable chlorophyll fluorescence inherent in this photosystem. The involvement of pheophytin redox chemistry on both the acceptor and donor side of photosystem II is postulated to achieve redox potentials high enough to oxidize water. The presence of this symmetry would be the cause of inefficient photochemistry in photosystem II when, under unbalanced carbon metabolism, a surplus charge remains on the reaction centre. In addition, such a scheme would enable an efficient dissipation of surplus energy in the reaction centre itself, and would be the origin ofthe ‘energy-dependent’ quenching of chlorophyll fluorescence, q ( E ).


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 279
Author(s):  
Hao Zhang ◽  
Haitao Ge ◽  
Ye Zhang ◽  
Yingchun Wang ◽  
Pengpeng Zhang

Upon exposure of photosynthetic organisms to high light (HL), several HL acclimation responses are triggered. Herein, we identified a novel gene, slr0320, critical for HL acclimation in Synechocystis sp. PCC 6803. The growth rate of the Δslr0320 mutant was similar to wild type (WT) under normal light (NL) but severely declined under HL. Net photosynthesis of the mutant was lower under HL, but maximum photosystem II (PSII) activity was higher under NL and HL. Immunodetection revealed the accumulation and assembly of PSII were similar between WT and the mutant. Chlorophyll fluorescence traces showed the stable fluorescence of the mutant under light was much higher. Kinetics of single flash‐induced chlorophyll fluorescence increase and decay revealed the slower electron transfer from QA to QB in the mutant. These data indicate that, in the Δslr0320 mutant, the number of functional PSIIs was comparable to WT even under HL but the electron transfer between QA and QB was inefficient. Quantitative proteomics and real‐time PCR revealed that expression profiles of psbL, psbH and psbI were significantly altered in the Δslr0320 mutant. Thus, Slr0320 protein plays critical roles in optimizing PSII activity during HL acclimation and is essential for PSII electron transfer from QA to QB.


2021 ◽  
Author(s):  
alain boussac ◽  
julien sellés ◽  
marion hamon ◽  
miwa sugiura

Photosystem II (PSII), the oxygen-evolving enzyme, consists of 17 trans-membrane and 3 extrinsic membrane proteins. Other subunits bind to PSII during assembly, like Psb27, Psb28, Tsl0063. The presence of Psb27 has been proposed (Zabret et al. 2021; Huang et al. 2021; Xiao et al. 2021) to prevent the binding of PsbJ, a single transmembrane α-helix close to the quinone QB binding site. Consequently, a PSII rid of Psb27, Psb28 and Tsl0034 prior to the binding of PsbJ would logically correspond to an assembly intermediate. The present work describes experiments aiming at further characterizing such a ΔPsbJ-PSII, purified from the thermophilic Thermosynechococcus elongatus, by means of MALDI-TOF spectroscopy, Thermoluminescence, EPR spectroscopy and UV-visible time-resolved spectroscopy. In the purified ΔPsbJ-PSII, an active Mn4CaO5 cluster is present in 60-70 % of the centers. In these centers, although the forward electron transfer seems not affected, the Em of the QB/QB- couple increases by ≈120 mV thus disfavoring the electron coming back on QA. The increase of the energy gap between QA/QA- and QB/QB- could contribute in a protection against the charge recombination between the donor side and QB-, identified at the origin of photoinhibition under low light (Keren et al. 1997), and possibly during the slow photoactivation process.


1989 ◽  
Vol 44 (11-12) ◽  
pp. 979-984 ◽  
Author(s):  
G. Ajlani ◽  
I. Meyer ◽  
C. Astier ◽  
C. Vernotte

Abstract A Synechocystis 6714 mutant resistant to the phenol-type herbicide ioxynil was isolated and characterized. Ioxynil was shown to inhibit both the donor and the acceptor sides of photosystem II, but at different concentrations. The mutation found in the psbA gene (encoding the D, protein) at codon 266 (asparagine to threonine) [G. Ajlani, I. Meyer, C. Vernotte, and C. Astier, FEBS Lett. 246, 207-210 (1989)] gives a ten-fold resistance of the acceptor side to ioxynil without any modification of the sensitivity of the donor side. Electron transfer between the primary and the secondary acceptor of photosystem II was identical in the mutant and the wild type. The mutant remains sensitive to atrazine and is even more sensitive to DCMU than the wild type.


2016 ◽  
Vol 83 (3) ◽  
Author(s):  
Xin Zhang ◽  
Fei Ma ◽  
Xi Zhu ◽  
Junying Zhu ◽  
Junfeng Rong ◽  
...  

ABSTRACT Nitrite, a common form of inorganic nitrogen (N), can be used as a nitrogen source through N assimilation. However, high levels of nitrite depress photosynthesis in various organisms. In this study, we investigated which components of the photosynthetic electron transfer chain are targeted by nitrite stress in Synechocystis sp. strain PCC 6803 cells. Measurements of whole-chain and photosystem II (PSII)-mediated electron transport activities revealed that high levels of nitrite primarily impair electron flow in PSII. Changes in PSII activity in response to nitrite stress occurred in two distinct phases. During the first phase, which occurred in the first 3 h of nitrite treatment, electron transfer from the primary quinone acceptor (QA) to the secondary quinone acceptor (QB) was retarded, as indicated by chlorophyll (Chl) a fluorescence induction, S-state distribution, and QA − reoxidation tests. In the second phase, which occurred after 6 h of nitrite exposure, the reaction center was inactivated and the donor side of photosystem II was inhibited, as revealed by changes in Chl fluorescence parameters and thermoluminescence and by immunoblot analysis. Our data suggest that nitrite stress is highly damaging to PSII and disrupts PSII activity by a stepwise mechanism in which the acceptor side is the initial target. IMPORTANCE In our previous studies, an alga-based technology was proposed to fix the large amounts of nitrite that are released from NOX-rich flue gases and proved to be a promising industrial strategy for flue gas NOX bioremediation (W. Chen et al., Environ Sci Technol 50:1620–1627, 2016, https://doi.org/10.1021/acs.est.5b04696 ; X. Zhang et al., Environ Sci Technol 48:10497–10504, 2014, https://doi.org/10.1021/es5013824 ). However, the toxic effects of high concentrations of nitrite on algal cells remain obscure. The analysis of growth rates, photochemistry, and protein profiles in our study provides important evidence that the inhibition by nitrite occurs in two phases: in the first phase, electron transfer between QA − and QB is retarded, whereas in the second, the donor side of PSII is affected. This is an excellent example of investigating the “early” inhibitory effects (i.e., within the first 6 h) on the PSII electron transfer chain in vivo. This paper provides novel insights into the mechanisms of nitrite inhibition of photosynthesis in an oxygenic phototrophic cyanobacterium.


1990 ◽  
Vol 45 (5) ◽  
pp. 348-352 ◽  
Author(s):  
Jean-Marc Ducruet ◽  
Sophie Creuzet ◽  
Josiane Viénot

The kinctics of inhibition of photosystem II electron transfer by different diuron-like herbicides (ureas, triazines, triazinoncs, biscarbamates. uraciles) were studied, mainly by chlorophyll fluorescence measurements. Uracil derivatives and cyanazine, a particular triazinc. were the slowest acting compounds. The half-times of action were strongly temperature-dependent and were of the order of tens of seconds at 5 °C for urea or triazine inhibitors. The role of different limiting steps in the binding process is discussed.


Sign in / Sign up

Export Citation Format

Share Document