psii activity
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 25)

H-INDEX

13
(FIVE YEARS 3)

2024 ◽  
Vol 84 ◽  
Author(s):  
M. Javed ◽  
M. Iqbal ◽  
H. Bano ◽  
N. Hussain ◽  
A. Ghaffar ◽  
...  

Abstract Growth of plants is severely reduced due to water stress by affecting photosynthesis including photosystem II (PSII) activity and electron transport. This study emphasised on comparative and priority targeted changes in PSII activity due to progressive drought in seven populations of Panicum antidotale (P. antidotale) collected from Cholistan Desert and non-Cholistan regions. Tillers of equal growth of seven populations of P. antidotale grown in plastic pots filled with soil were subjected progressive drought by withholding water irrigation for three weeks. Progressive drought reduced the soil moisture content, leaf relative water content, photosynthetic pigments and fresh and dry biomass of shoots in all seven populations. Populations from Dingarh Fort, Dingarh Grassland and Haiderwali had higher growth than those of other populations. Cholistani populations especially in Dingarh Grassland and Haiderwali had greater ability of osmotic adjustment as reflected by osmotic potential and greater accumulation of total soluble proteins. Maximum H2O2 under water stress was observed in populations from Muzaffargarh and Khanewal but these were intermediate in MDA content. Under water stress, populations from Muzaffargarh and Dingarh Fort had greater K+ accumulation in their leaves. During progressive drought, non-Cholistani populations showed complete leaf rolling after 23 days of drought, and these populations could not withstand with more water stress condition while Cholistani populations tolerated more water stress condition for 31 days. Moreover, progressive drought caused PSII damages after 19 days and it became severe after 23 days in non-Cholistani populations of P. antidotale than in Cholistani populations.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2024
Author(s):  
Fei Cheng ◽  
Min Gao ◽  
Junyang Lu ◽  
Yuan Huang ◽  
Zhilong Bie

Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photosystem II (PSII) activity and antioxidant metabolism, the spatio–temporal response of SA biosynthesis and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxidase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings. The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea (DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistribution in the leaves and roots and participates in the regulation of antioxidant metabolism probably through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sarah Ambreen ◽  
Habib-ur-Rehman Athar ◽  
Ameer Khan ◽  
Zafar Ullah Zafar ◽  
Ahsan Ayyaz ◽  
...  

Abstract Background Proline can promote growth of plants by increasing photosynthetic activity under both non-stress and abiotic stress conditions. However, its role in non-stressed conditions is least studied. An experiment was conducted to assess as to whether increase in growth of wheat due to seed priming with proline under non-stress condition was associated with proline-induced changes in photosystem II (PSII) activity. Seeds of four wheat varieties (S-24, Sehar-06, Galaxy-13, and Pasban-90) were primed with different concentrations of proline (0, 5, 15 and 25 mM) for 12 h and allowed to grow under normal conditions. Biomass accumulation and photosynthetic performance, being two most sensitive features/indicators of plant growth, were selected to monitor proline modulated changes. Results Seed priming with proline increased the fresh and dry weights of shoots and roots, and plant height of all four wheat varieties. Maximum increase in growth attributes was observed in all four wheat varieties at 15 mM proline. Maximum growth improvement due to proline was found in var. Galaxy-13, whereas the reverse was true for S-24. Moreover, proline treatment changed the Fo, Fm, Fv/Fo, PIABS, PITot in wheat varieties indicating changes in PSII activity. Proline induced changes in energy fluxes for absorption, trapping, electron transport and heat dissipation per reaction center indicated that var. Galaxy-13 had better ability to process absorbed light energy through photosynthetic machinery. Moreover, lesser PSII efficiency in var. S-24 was due to lower energy flux for electron transport and greater energy flux for heat dissipation. This was further supported by the fact that var. S-24 had disturbance at acceptor side of PSI as reflected by reduction in ΔVIP, probability and energy flux for electron transport at the PSI end electron acceptors. Conclusion Seed priming with proline improved the growth of wheat varieties, which depends on type of variety and concentration of proline applied. Seed priming with proline significantly changed the PSII activity in wheat varieties, however, its translation in growth improvement depends on potential of processing of absorbed light energy by electron acceptors of electron transport chain, particularly those present at PSI end.


2021 ◽  
Vol 53 (5) ◽  
pp. 435-443
Author(s):  
J. Jafarova ◽  
◽  
R. Ganieva ◽  
L. Mammadova ◽  
R. Agalarov ◽  
...  

2021 ◽  
Author(s):  
Daisei Ueno ◽  
Yuta Ito ◽  
Miho Ohnishi ◽  
Chikahiro Miyake ◽  
Takayuki Sohtome ◽  
...  

Abstract Purpose Phytosiderophores (PS) from grasses solubilize sparingly soluble iron (Fe), and the resultant PS-Fe is an Fe source even for dicots. Recently, the synthetic PS proline-2′-deoxymugineic acid (PDMA) has been developed as a moderately biodegradable Fe fertilizer for grasses. We aimed to investigate whether PDMA-Fe is also a good Fe source for dicots. Methods The availability of PDMA-Fe to cucumber was evaluated in a calcareous substrate and hydroponic cultures at pH 7.0–9.0 by determining chlorophyll level, PSII activity, and Fe uptake. EDDHA-Fe, EDTA-Fe, and citrate-Fe were used as controls. The reducibility of Fe chelates by roots was measured to determine the mechanism underlying differences in availability. Expressions of Fe deficiency-inducible genes were analyzed to estimate the Fe status in plants. Results The application of PDMA-Fe and EDDHA-Fe to a calcareous substrate reduced Fe-deficient chlorosis to a similar extent; however, the shoot Fe concentration was higher in the PDMA-Fe treatment. In the hydroponic culture, the availability of PDMA-Fe was higher than that of the other chelates at all pH levels, and this was confirmed by higher PSII activity and lower expression of Fe deficiency-inducible genes. The reducibility assay revealed that the reduction level of PDMA-Fe was greater than that of EDTA-Fe and citrate-Fe under alkaline pH. Conclusions PDMA-Fe is utilized by cucumber roots more efficiently than traditional synthetic chelates in both calcareous substrate and hydroponic cultures. The higher availability of PDMA-Fe may be attributed to its higher reducibility. Our findings suggest that PDMA-Fe could be a good Fe fertilizer for dicots.


2021 ◽  
Vol 68 (5) ◽  
pp. 867-872
Author(s):  
M. S. Khristin ◽  
T. N. Smolova ◽  
V. D. Kreslavski

Abstract The dynamics of changes in the photochemical activity of photosystem II (PSII) and low-temperature spectra at 77 K in the first leaves of 11-day winter wheat plants Triticum aestivum L., as well as structural changes in chlorophyll-protein complexes (CPC) of thylakoid membranes during recovery after a short-term (20 min) heating at a temperature of 42°C, were studied. Changes in the Fv/Fm, F735/F695, and F735/F685 ratios indicate inhibition of PSII immediately after heating. Using nondenaturing electrophoresis, it was shown that the light-harvesting Chl a/b complex of PSII does not aggregate immediately after heating but after several hours, after 6 h the desagregation of CPC was observed, which was consistent with an increase in the Fv/Fm ratio upon recovery. The influence of temperature, intensity, and quality of light (white, blue, and red light) on the recovery of PSII activity and low-temperature fluorescence spectra was studied. It was concluded that the recovery is a photo-activated low-energy process, independent of photosynthesis, and the most effective in blue light.


2021 ◽  
Author(s):  
Daisei Ueno ◽  
Yuta Ito ◽  
Miho Ohnishi ◽  
Chikahiro Miyake ◽  
Takayuki Sohtome ◽  
...  

Abstract Purpose: Phytosiderophores (PS) from grasses solubilize sparingly soluble iron (Fe), and the resultant PS-Fe is an Fe source, even for dicots. Recently, the synthetic PS proline-2′-deoxymugineic acid (PDMA) has been developed as a moderately biodegradable Fe fertilizer for grasses. We aimed to investigate whether PDMA-Fe is also a good Fe source for dicots.Methods: The availability of PDMA-Fe to cucumber was evaluated in calcareous soil and hydroponic cultures under pH 7.0–9.0 by determining chlorophyll concentration, PSII activity, and Fe uptake. EDDHA-Fe, EDTA-Fe, and citrate-Fe were used as controls. The reducibility of Fe chelates by roots was measured to determine the mechanism underlying differences in availability. Expressions of Fe deficiency-inducible genes (CsFRO1 and CsIRT1) were analyzed to estimate the Fe status in plants. Results: Application of PDMA-Fe and EDDHA-Fe to calcareous soil reduced Fe-deficient chlorosis to a similar extent; however, shoot Fe concentration was higher in the PDMA-Fe treatment. In the hydroponic culture, PDMA-Fe had higher availability than the other chelates at every pH, which was confirmed by higher PSII activity and lower expression of Fe deficiency-inducible genes. The reducibility assay revealed that the reduction level of PDMA-Fe was greater than that of EDTA-Fe and citrate-Fe under alkaline pH.Conclusion: PDMA-Fe is utilized by cucumber roots more efficiently than traditional synthetic chelates in both calcareous soil and hydroponic cultures. The higher availability of PDMA-Fe may be attributed to its higher reducibility. Our findings suggest that PDMA-Fe could be a good Fe fertilizer for dicots.


2021 ◽  
Vol 50 (2) ◽  
pp. 433-436
Author(s):  
Yuan Xue Tao ◽  
Li Fu Ping

Photosynthetic capacity and photosystem II (PSII) activity decreased with increasing temperature, whereas antioxidant enzyme activity showed the opposite trend. High temperature stress induced a significant increase in Φf,D, and D1 protein turnover rate. Photosynthetic capacity, PSII activity, and antioxidant enzyme levels in plants treated at 35 and 40°C were restored to control levels upon stress relief, whereas those in plants grown at 45℃ were only partially restored. Therefore, the temperature limit for heat tolerance in Parthenocissus quinquefolia is between 40 and 45℃. Further, it was observed that antioxidant enzymes were crucial for high-temperature stress resistance in P. quinquefolia, with DEGP1 protein playing a major role in the rapid turnover of D1 protein for PSII repair. Bangladesh J. Bot. 50(2): 433-436, 2021 (June)


2021 ◽  
Vol 22 (10) ◽  
pp. 5258
Author(s):  
Bei Liu ◽  
Di Zhang ◽  
Ming Sun ◽  
Manli Li ◽  
Xiqing Ma ◽  
...  

The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), ‘Triple Crown’ and ‘Qinghai 444’, with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for ‘Qinghai 444’. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in ‘Triple Crown’ and ‘Qinghai 444’ bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of ‘Qinghai 444’ bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with ‘Triple Crown’. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.


Sign in / Sign up

Export Citation Format

Share Document