cDNA clones encoding Arabidopsis thaliana and Zea mays mitochondrial chaperonin HSP60 and gene expression during seed germination and heat shock

1992 ◽  
Vol 18 (5) ◽  
pp. 873-885 ◽  
Author(s):  
Tottempudi K. Prasad ◽  
Cecil R. Stewart
Botany ◽  
2017 ◽  
Vol 95 (1) ◽  
pp. 9-27 ◽  
Author(s):  
Gillian Halter ◽  
Nicole Simonetti ◽  
Cristy Suguitan ◽  
Kenneth Helm ◽  
Jessica Soroksky ◽  
...  

Thermotolerance is a property of all organisms, but owing to their sessile nature, this trait is particularly important in plants. Basal thermotolerance is based on inherent tolerance to heat stress. Acquired thermotolerance is attained through stress-induced gene expression, often of those genes encoding heat shock proteins (HSPs). Both basal and acquired thermotolerance have been extensively studied in model species such as Arabidopsis thaliana (L.) Heynh., but much less is known about thermotolerance in wild plant species. The aims of this study were to examine the basal and acquired thermotolerance of four species of Boechera, and of A. thaliana. Four species of Boechera native to California were collected and used for this study: B. arcuata (Nutt.) Windham & Al-Shehbaz, B. californica (Rollins) Windham & Al-Shehbaz, B. depauperata (A.Nelson & P.B.Kenn.) Windham & Al-Shehbaz, and B. perennans (S.Watson) W.A.Weber. Seedlings were exposed to both basal and acquired heat stress and then monitored for leaf damage, chlorophyll fluorescence, and gene expression of HsfA3, Hsp101, and four sHSP genes. Analysis of organismal responses to heat stress demonstrated that all four Boechera species are more thermotolerant than A. thaliana. Further we found that he species with the highest thermotolerance is B. depauperata.


Plant Science ◽  
2019 ◽  
Vol 283 ◽  
pp. 375-384 ◽  
Author(s):  
Guo-liang Li ◽  
Hua-ning Zhang ◽  
Hongbo Shao ◽  
Gui-yan Wang ◽  
Yuan-yuan Zhang ◽  
...  

2021 ◽  
Vol 118 (14) ◽  
pp. e2020636118
Author(s):  
Inhye Lee ◽  
Eunsun Kim ◽  
Soobin Choi ◽  
Dayoung Kim ◽  
Wangyu Hong ◽  
...  

Plants sense and integrate diverse stimuli to determine the timing for germination. A smoke compound, 3,4,5-trimethylfuran-2(5H)-one (trimethylbutenolide, TMB), has been identified to inhibit the seed germination of higher plants. To understand the mode of action, we examined various physiological and molecular aspects of the TMB-dependent inhibition of seed germination in Arabidopsis thaliana. The results indicated that the effect of TMB is due to the enhanced physiological dormancy, which is modulated by other dormancy regulatory cues such as after-ripening, stratification, and ABA/GA signaling. In addition, gene expression profiling showed that TMB caused genome-wide transcriptional changes, altering the expression of a series of dormancy-related genes. Based on the TMB-responsive physiological contexts in Arabidopsis, we performed mutant screening to isolate genetic components that underpin the TMB-induced seed dormancy. As a result, the TMB-RESISTANT1 (TES1) gene in Arabidopsis, encoding a B2 group Raf-like kinase, was identified. Phenotypic analysis of the tes1 mutant implicated that TES1 has a critical role in the TMB-responsive gene expression and the inhibition of seed germination. Taken together, we propose that plants have been equipped with a TMB sensory pathway through which the TMB induces the seed dormancy in a TES1-dependent way.


1999 ◽  
Vol 73 (5) ◽  
pp. 3560-3566 ◽  
Author(s):  
Christopher L. Parks ◽  
Robert A. Lerch ◽  
Pramila Walpita ◽  
Mohinderjit S. Sidhu ◽  
Stephen A. Udem

ABSTRACT Rescue of negative-stranded RNA viruses from full-length genomic cDNA clones is an essential technology for genetic analysis of this class of viruses. Using this technology in our studies of measles virus (MV), we found that the efficiency of the measles virus rescue procedure (F. Radecke et al., EMBO J. 14:5773–5784, 1995) could be improved by modifying the procedure in two ways. First, we found that coculture of transfected 293-3-46 cells with a monolayer of Vero cells increased the number of virus-producing cultures about 20-fold. Second, we determined that heat shock treatment increased the average number of transfected cultures that produced virus another two- to threefold. In addition, heat shock increased the number of plaques produced by positive cultures. The effect of heat shock on rescue led us to test the effect on transient expression from an MV minireplicon. Heat shock increased the level of reporter gene expression when either minireplicon DNA or RNA was used regardless of whether complementation was provided by cotransfection with expression plasmids or infection with MV helper virus. In addition, we found that MV minireplicon gene expression could be stimulated by cotransfection with an Hsp72 expression plasmid, indicating that hsp72 likely plays a role in the effect of heat shock.


2017 ◽  
Vol 117 ◽  
pp. 51-60 ◽  
Author(s):  
Junhuan Xu ◽  
Thu Tran ◽  
Carmen S. Padilla Marcia ◽  
David M. Braun ◽  
Fiona L. Goggin

2020 ◽  
Vol 10 (11) ◽  
pp. 4215-4226
Author(s):  
Margi Hartanto ◽  
Ronny V. L. Joosen ◽  
Basten L. Snoek ◽  
Leo A. J. Willems ◽  
Mark G. Sterken ◽  
...  

Seed germination is characterized by a constant change of gene expression across different time points. These changes are related to specific processes, which eventually determine the onset of seed germination. To get a better understanding on the regulation of gene expression during seed germination, we performed a quantitative trait locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-ripened, six-hour after imbibition, and radicle protrusion stage) using Arabidopsis thaliana Bay x Sha recombinant inbred lines (RILs). The mapping displayed the distinctness of the eQTL landscape for each stage. We found several eQTL hotspots across stages associated with the regulation of expression of a large number of genes. Interestingly, an eQTL hotspot on chromosome five collocates with hotspots for phenotypic and metabolic QTL in the same population. Finally, we constructed a gene co-expression network to prioritize the regulatory genes for two major eQTL hotspots. The network analysis prioritizes transcription factors DEWAX and ICE1 as the most likely regulatory genes for the hotspot. Together, we have revealed that the genetic regulation of gene expression is dynamic along the course of seed germination.


Sign in / Sign up

Export Citation Format

Share Document