virus rescue
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 8 (11) ◽  
pp. 272
Author(s):  
Wanting Yu ◽  
Yuao Sun ◽  
Qing He ◽  
Chaoying Sun ◽  
Tian Dong ◽  
...  

Porcine circovirus 2 (PCV2), considered one of the most globally important porcine pathogens, causes postweaning multisystemic wasting syndrome (PMWS). This virus is localized in the mitochondria in pigs with PMWS. Here, we identified, for the first time, a mitochondrial localization signal (MLS) in the PCV2 capsid protein (Cap) at the N-terminus. PK-15 cells showed colocalization of the MLS-EGFP fusion protein with mitochondria. Since the PCV2 Cap also contained a nuclear localization signal (NLS) that mediated entry into the nucleus, we inferred that the subcellular localization of the PCV2 Cap is inherently complex and dependent on the viral life cycle. Furthermore, we also determined that deletion of the MLS attenuated Cap-induced apoptosis. More importantly, the MLS was essential for PCV2 replication, as absence of the MLS resulted in failure of virus rescue from cells infected with infectious clone DNA. In conclusion, the MLS of the PCV2 Cap plays critical roles in Cap-induced apoptosis, and MLS deletion of Cap is lethal for virus rescue.


2021 ◽  
Author(s):  
Adam Joseph Hume ◽  
Baylee Heiden ◽  
Judith Olejnik ◽  
Ellen Lee Suder ◽  
Stephen Ross ◽  
...  

Next generation sequencing has revealed the presence of many RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, many of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Recombinant LLOV (rLLOV) displays typical filovirus features, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal against pandemic preparedness.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 363
Author(s):  
Alexander Falkenhagen ◽  
Marno Huyzers ◽  
Alberdina A. van Dijk ◽  
Reimar Johne

The rotavirus species A (RVA) capsid contains the spike protein VP4, which interacts with VP6 and VP7 and is involved in cellular receptor binding. The capsid encloses the genome consisting of eleven dsRNA segments. Reassortment events can result in novel strains with changed properties. Using a plasmid-based reverse genetics system based on simian RVA strain SA11, we previously showed that the rescue of viable reassortants containing a heterologous VP4-encoding genome segment was strain-dependent. In order to unravel the reasons for the reassortment restrictions, we designed here a series of plasmids encoding chimeric VP4s. Exchange of the VP4 domains interacting with VP6 and VP7 was not sufficient for rescue of viable viruses. In contrast, the exchange of fragments encoding the receptor-binding region of VP4 resulted in virus rescue. All parent strains and the rescued reassortants replicated efficiently in MA-104 cells used for virus propagation. In contrast, replication in BSR T7/5 cells used for plasmid transfection was only efficient for the SA11 strain, whereas the rescued reassortants replicated slowly, and the parent strains failing to produce reassortants did not replicate. While future research in this area is necessary, replication in BSR T7/5 cells may be one factor that affects the rescue of RVAs.


Author(s):  
Jeremy C Jones ◽  
Philippe N Q Pascua ◽  
Walter N Harrington ◽  
Richard J Webby ◽  
Elena A Govorkova

Abstract Background Baloxavir marboxil is an antiviral drug that targets the endonuclease activity of the influenza virus polymerase acidic (PA) protein. PA I38T/M/F substitutions reduce its antiviral efficacy. Objectives To understand the effects of the 19 possible amino acid (AA) substitutions at PA 38 on influenza A(H1N1)pdm09 polymerase activity and inhibition by baloxavir acid, the active metabolite of baloxavir marboxil. Methods Influenza A(H1N1)pdm09 viral polymerase complexes containing all 19 I38X AA substitutions were reconstituted in HEK293T cells in a mini-replicon assay. Polymerase complex activity and baloxavir inhibitory activity were measured in the presence or absence of 50 nM baloxavir acid. Results Only three substitutions (R, K, P) reduced polymerase activity to <79% of I38-WT. When compared with the prototypical baloxavir marboxil resistance marker T38, 5 substitutions conferred 10%–35% reductions in baloxavir acid inhibitory activity (M, L, F, Y, C) and 11 substitutions conferred >50% reductions (R, K, S, N, G, W, A, Q, E, D, H), while two substitutions (V, P) maintained baloxavir acid inhibitory activity. Conclusions Most PA 38 substitutions permit a functional replication complex retaining some drug resistance in the mini-replicon assay. This study provides a targeted approach for virus rescue and analysis of novel baloxavir marboxil reduced-susceptibility markers, supports the consideration of a broader range of these markers during antiviral surveillance and adds to the growing knowledge of baloxavir marboxil resistance profiles.


2018 ◽  
Vol 115 (5) ◽  
pp. 1069-1074 ◽  
Author(s):  
Rasmus Møller ◽  
Toni M. Schwarz ◽  
Vanessa M. Noriega ◽  
Maryline Panis ◽  
David Sachs ◽  
...  

Human cytomegalovirus (HCMV) impacts more than one-half of the human population owing to its capacity to manipulate the cell and create latent reservoirs in the host. Despite an extensive understanding of HCMV biology during acute infection in fibroblasts, the molecular basis for latency in myeloid cells remains incomplete. This knowledge gap is due largely to the fact that the existing genetic systems require virus rescue in fibroblasts, precluding the study of genes that are essential during acute infection, yet likely play unique roles in myeloid cells or the establishment of latency. Here we present a solution to address this restriction. Through the exploitation of a hematopoietic-specific microRNA, we demonstrate a one-step recombineering approach that enables gene silencing only in cells associated with latency. As a proof of concept, here we describe a TB40/E variant that undergoes hematopoietic targeting of the Immediate Early-2 (IE2) gene to explore its function during infection of myeloid cells. While virus replication of the hematopoietic-targeted IE2 variant was unimpaired in fibroblasts, we observed a >100-fold increase in virus titers in myeloid cells. Virus replication in myeloid cells demonstrated that IE2 has a significant transcriptional footprint on both viral and host genes. These data implicate IE2 as an essential mediator of virus biology in myeloid cells and illustrate the utility of cell-specific microRNA-based targeting.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jingyi Yan ◽  
Jianing Dong ◽  
Jiaxin Wu ◽  
Rui Zhu ◽  
Zhen Wang ◽  
...  
Keyword(s):  

2014 ◽  
Vol 88 (6) ◽  
pp. 3505-3515 ◽  
Author(s):  
A. Lounkova ◽  
E. Draberova ◽  
F. Senigl ◽  
K. Trejbalova ◽  
J. Geryk ◽  
...  

2013 ◽  
Vol 87 (18) ◽  
pp. 10389-10393 ◽  
Author(s):  
K. Ebert ◽  
D. P. Depledge ◽  
J. Breuer ◽  
L. Harman ◽  
G. Elliott

2013 ◽  
Vol 94 (6) ◽  
pp. 1175-1188 ◽  
Author(s):  
Emilio Ortiz-Riaño ◽  
Benson Yee Hin Cheng ◽  
Juan Carlos de la Torre ◽  
Luis Martínez-Sobrido

Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.


2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Vincent Bourret ◽  
Jon Lyall ◽  
Mariette F Ducatez ◽  
Jean-Luc Guérin ◽  
Laurence Tiley

Sign in / Sign up

Export Citation Format

Share Document