Contribution of host-pathogen interactions to the expression of the blackleg disease of spring rape (Brassica napus L.) caused by Leptosphaeria maculans (Desm.) Ces. et de not

Euphytica ◽  
1980 ◽  
Vol 29 (2) ◽  
pp. 465-476 ◽  
Author(s):  
Lorelle A. Cargeeg ◽  
N. Thurling
1995 ◽  
Vol 75 (2) ◽  
pp. 437-439 ◽  
Author(s):  
G. R. Stringam ◽  
V. K. Bansal ◽  
M. R. Thiagarajah ◽  
D. F. Degenhardt ◽  
J. P. Tewari

The doubled haploid breeding method and greenhouse screening using cotyledon bio-assay were successfully applied to transfer blackleg resistance from the Australian cultivar Maluka (Brassicas napus), into susceptible advanced B. napus lines from the University of Alberta. This approach for blackleg resistance breeding was effective and efficient as several superior blackleg resistant breeding lines were identified within 4 yr from the initial cross. One of these lines (91–21864NA) was entered in the 1993 trials of the Western Canada Canola/Rapeseed Recommending Committee. Key words: Blackleg resistance, Leptosphaeria maculans, doubled haploid, Brassica napus


2019 ◽  
Vol 366 (7) ◽  
Author(s):  
Andrew S Urquhart ◽  
Alexander Idnurm

ABSTRACT Identification of pathogenicity determinants in Leptosphaeria maculans, a major cause of disease of oilseed crops, has been a focus of research for many years. A wealth of gene expression information from RNA sequencing promises to illuminate the mechanisms by which the fungus is able to cause blackleg disease. However, to date, no studies have tested the hypothesis that high gene transcript levels during infection correlate with importance to disease progression. In this study, we use CRISPR-Cas9 to disrupt 11 genes that are highly expressed during the early stages of disease and show that none of these genes are crucial for fungal pathogenicity on Brassica napus. This finding suggests that in order to understand the pathogenicity of this fungus more sophisticated techniques than simple expression analysis will need to be employed.


Author(s):  
Zhongwei Zou ◽  
Fei Liu ◽  
Shuanglong Huang ◽  
DILANTHA GERARD FERNANDO

Proteins containing Valine-glutamine (VQ) motifs play important roles in plant growth and development, as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus L.) worldwide. H; however, the identification of B. napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome genome-wide identification and characterization of the VQ gene family in B. napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand B. napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase4 substrate1 (MKS1) gene) in a blackleg-susceptible canola variety Westar. Overexpression The overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage. H; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the SA salicylic acid (SA)- and jasmonic acid (JA )-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in the defense against L. maculans.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rosy Raman ◽  
Simon Diffey ◽  
Denise M. Barbulescu ◽  
Neil Coombes ◽  
David Luckett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document