Effect of embryo age and culture media on plant growth and vernalization response in winter wheat

Euphytica ◽  
1982 ◽  
Vol 31 (3) ◽  
pp. 629-634 ◽  
Author(s):  
H. C. Sharma ◽  
B. S. Gill
Author(s):  
Žilvinas Liatukas ◽  
Vytautas Ruzgas

Tolerance to Pre-Harvest Sprouting in Lithuanian Winter Wheat Advanced Lines Tolerance to pre-harvest sprouting of winter wheat advanced breeding lines was evaluated at the Lithuanian Institute of Agriculture in 2005 and 2006. The tests were conducted with intact ears germinated in plastic boxes on wet filter paper in a plant growth chamber. A total of 131 breeding lines were tested during the experimental period. The experiment revealed that sprouting cumulative index (SCI) characterises resistance of lines to pre-harvest sprouting more precisely than sprouting final score (SFS). The SFS ranged from 4.3 to 9.0 in 2005 and from 5.4 to 9.0 in 2006. The SCI value was 0.14-1.0 in both years. Lines in 2005 were more susceptible to pre-harvest sprouting than those in 2006. The most resistant were found to be the lines Flair/Asketis, Torfrida/Beaver//Tarso, Širvinta1/LIA3480, while the most susceptible ones were Elena/Flair, Mermaid/Alidos, Flair/Lut.96-3 in 2005. In 2006, the most resistant lines were Pegassos/Dream, Belisar/Briz, Lars/Lut.96-3 and the most susceptible were Rostovchanka/Lut.96-3, Rector/Briz, Rostovchanka/Flair. The SFS of resistant lines was up to score 6 and the SCI value reached 0.3 in both years. The SFS of susceptible lines was 9.0 and the SCI value more than 0.9 in both years.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Julian Rodriguez-Algaba ◽  
Chris K. Sørensen ◽  
Rodrigo Labouriau ◽  
Annemarie F. Justesen ◽  
Mogens S. Hovmøller

Environmental factors influence the disease susceptibility of crop plants. In this study, we established an experimental system to investigate the effects of vernalisation, temperature and plant growth stage on the susceptibility of winter wheat and winter triticale to Puccinia striiformis, the causal agent of yellow (stripe) rust. Two temperature regimes: standard (18 °C day/12 °C night) and low (12 °C day/6 °C night), vernalised and non-vernalised seedlings, vernalised adult plants and two pathogen races were investigated. At low temperatures, vernalisation reduced the susceptibility of seedlings exposed to the ‘Warrior’ race, while this was only the case for five out of eight varieties exposed to the ‘Kranich’ race. Changing from standard to low temperature resulted in increased susceptibility of non-vernalised seedlings of seven varieties inoculated with the ‘Warrior’ race and five varieties inoculated with the ‘Kranich’ race. Increased susceptibility at low temperature was also detected for several varieties at the adult plant growth stage. Comparisons between vernalised seedlings and adult plants revealed an effect of plant growth stage on disease susceptibility (e.g., Adult Plant Resistance) in five varieties at standard temperature for the ‘Warrior’ race and in five and four varieties at standard and low temperature respectively, for the ‘Kranich’ race. The complex and unpredictable interactions between environment and pathogen influencing yellow rust susceptibility of individual varieties stress the importance of phenotyping for disease resistance under different environmental conditions and pathogen populations. The environmental impact on rust susceptibility should also be taken into account in early-warning systems targeting wheat and triticale breeding programmes and growers.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0209460 ◽  
Author(s):  
Olena V. Moshynets ◽  
Lidia M. Babenko ◽  
Sergiy P. Rogalsky ◽  
Olga S. Iungin ◽  
Jessica Foster ◽  
...  

2012 ◽  
Vol 38 (No. 3-4) ◽  
pp. 97-103 ◽  
Author(s):  
J. Košner ◽  
K. Pánková

For 17 cultivars of winter wheat (Triticum aestivum L.) different vernalization and photoperiod responses were detected. The effect of photoperiod sensitivity was not significantly changed by vernalization; different vernalization responses were probably due to the presence of multiple alleles at Vrn loci. The delay in heading depended on the vernalization deficit exponentially: y = Parameter (1) + (y0 – Parameter (1)) × EXP (Parameter (2) × (x – x0)). The dependence was shown to be general and significant for the given model in all the studied cultivars. Individual regressions characterised responses of cultivars to a deficit of vernalization treatment. Cluster analysis according to the characterisation obtained (full vernalization requirement, minimum vernalization requirement, insufficient vernalization and parameters of the dependence) showed the relationships between cultivars and enabled their grouping by similar profiles of vernalization, and, possibly, of photoperiod response. In individual cultivars, an attempt was made to use the model to predict performance for some agronomic traits.


2019 ◽  
Vol 15 (1) ◽  
pp. 1-7
Author(s):  
Daniele Camargo Nascimento ◽  
Maximiliano Dini ◽  
Norton Victor Sampaio ◽  
Márcia Wulff Schuch

2020 ◽  
Vol 23 (1) ◽  
pp. 178-190
Author(s):  
Jeillan Hussein ◽  
Diaa ibraheam

Marumi kumquat (Fortunella Japonica) is culture for its valuable nutritional value and medicinal importance in many regions of the world. The current study aimed to evaluate the effect of two types of media enriched with different concentrations of fructose and different plant growth regulators and different fructose concentration on in vitro propagation of Fortunella Japonica. The findings showed that the most effective treatment for explant surface sterilization was by using 0.1% HgCl2 for ten minutes which give best results for production contamination-free explants at the initiation cultures. At multiplication stage, WPM medium gave better results at all tested BA levels as compared with MS medium. No significant differences were showed by using BA alone or in combination with GA3 in the measured parameters. It has been observed that WPM medium supplemented with 0.5mgl-1 BA with the presence of 30mgl-1 fructose was able to give the highest shoot length (1.56cm) with maximum shoots number/explant 9.0 and highest leaves number/explant (21.0). The proliferated shoots were exposed to full strength MS medium salts supplemented with 2mgl-1 NAA which showed the highest ratio of rooting. In vitro rooted plantlets were gradually acclimatized and transferred to open air conditions, which recorded a high survive rate reached to 92%


Biologija ◽  
2018 ◽  
Vol 64 (2) ◽  
Author(s):  
Jitendra Nag ◽  
Biplab Dash ◽  
Anup Kumar Singh ◽  
Tapas Chowdhury ◽  
Shyam Bihari Gupta ◽  
...  

In the present study, 20 soil and plant samples from 13 villages of Raipur, Durg, and Balod District of Chhattisgarh (India) were collected from chickpea fields. From these samples, a total of 86 isolates including 16 Rhizobium, 40 Azotobacter, 29 Azosprillum, and one PSB were obtained on selective culture media. All the isolates were screened for their plant growth-promoting traits. Three (GmR8, ASL3 & ASL4) out of 86 were finally selected for further studies. One Azotobacter isolate, i.e., Azo137, was selected from the departmental culture collection. Finally, four isolates including GmR8 (Rhizobium), ASL3, ASL4 (Azospirillum), and Azo137 were selected for composite culture formulations. GmR and ASL4 were siderophore-producing isolates, whereas ASL3 and Azo137 were IAA producer along with their ability to fix nitrogen. Five composite cultures were prepared randomly and tested for effect on the growth of chickpea (the seedling test and the pot experiment). Among all the composite culture groups, C2 (GmR8, Azo137, ASL4) significantly increased the root (10.84 cm) and shoot (8.10 cm) length, whereas biomass (3.60 g) was the highest in the case of C1 (GmR8, Azo137, ASL3, ASL4) of seedlings as compared to the control (6.80 cm, 2.60 cm, and 3.30 g, respectively). Overall, the study revealed a better performance of composite or mixed culture over individual bacteria.


2017 ◽  
Vol 23 (3) ◽  
pp. 270
Author(s):  
Michele Valquíria Dos Reis ◽  
Fernanda Carlota Nery ◽  
Débora De Oliveira Prudente ◽  
Patricia Duarte de Oliveira Paiva ◽  
Renato Paiva ◽  
...  

Zingiber spectabile is a tropical ornamental species with difficulties to obtain efficient propagation system. Thus, this study aimed to assess the in vitro propagation of Zingiber spectabile. Seed characterization was determined by measuring length, width and thickness, the weight of 1000 seeds and imbibition curve. In vitro germination of seeds was at constant (25 °C) or alternating temperatures (20-30 ºC). For optimization of in vitro multiplication, different concentrations of activated charcoal (0.0, 0.1 and 0.3%) and sucrose (0.0, 0.1, 0.3, 0.5 and 0.7 M) were evaluated. Plantlets were inoculated in flasks with different sealing systems (PVC covers with or without filters at the center) and culture media (MS or WPM). The plants were acclimatized in Plantmax® substrate. Seeds were of 6.06 mm length, 3.22 mm wide and 2.83 mm thick. The weight of 1,000 seeds corresponded to 46.4 g. The seed imbibition curve approaches to a tree phase pattern. Alternating temperatures induced high germination rates (68%). The addition of 0.3% activated charcoal provided higher root growth and plants with smaller number of senescent leaves. The best plant growth was obtained by the use of 0.1 M sucrose. All acclimatized plants survived (100%). The results demonstrate that Z. spectabile respond well to in vitro propagation.


Sign in / Sign up

Export Citation Format

Share Document