Jasmonic acid and abscisic acid in shoots, coleoptiles, and roots of wheat seedlings

1994 ◽  
Vol 13 (2) ◽  
pp. 59-62 ◽  
Author(s):  
Wilfried Dathe ◽  
Andrew D. Parry ◽  
James K. Heald ◽  
Ian M. Scott ◽  
Otto Miersch ◽  
...  
2002 ◽  
Vol 128 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Agnieszka Świa̧tek ◽  
Marc Lenjou ◽  
Dirk Van Bockstaele ◽  
Dirk Inzé ◽  
Harry Van Onckelen

2019 ◽  
Author(s):  
Irene A Vos ◽  
Adriaan Verhage ◽  
Lewis G Watt ◽  
Ido Vlaardingerbroek ◽  
Robert C Schuurink ◽  
...  

AbstractJasmonic acid (JA) is an important plant hormone in the regulation of defenses against chewing herbivores and necrotrophic pathogens. In Arabidopsis thaliana, the JA response pathway consists of two antagonistic branches that are regulated by MYC- and ERF-type transcription factors, respectively. The role of abscisic acid (ABA) and ethylene (ET) in the molecular regulation of the MYC/ERF antagonism during plant-insect interactions is still unclear. Here, we show that production of ABA induced in response to leaf-chewing Pieris rapae caterpillars is required for both the activation of the MYC-branch and the suppression of the ERF-branch during herbivory. Exogenous application of ABA suppressed ectopic ERF-mediated PDF1.2 expression in 35S::ORA59 plants. Moreover, the GCC-box promoter motif, which is required for JA/ET-induced activation of the ERF-branch genes ORA59 and PDF1.2, was targeted by ABA. Application of gaseous ET counteracted activation of the MYC-branch and repression of the ERF-branch by P. rapae, but infection with the ET-inducing necrotrophic pathogen Botrytis cinerea did not. Accordingly, P. rapae performed equally well on B. cinerea-infected and control plants, whereas activation of the MYC-branch resulted in reduced caterpillar performance. Together, these data indicate that upon feeding by P. rapae, ABA is essential for activating the MYC-branch and suppressing the ERF-branch of the JA pathway, which maximizes defense against caterpillars.


2019 ◽  
Vol 110 (2) ◽  
pp. 285-292
Author(s):  
Saeideh Esmaeily ◽  
Mohammad Amin Samih ◽  
Hamzeh Izadi

AbstractGreenhouse whitefly, Trialeurodes vaporariorum Westwood, is one of the major insect pests of agricultural crops such as eggplant. Due to various difficulties associated with synthetic pesticides, more environmentally friendly alternative methods are greatly appreciated for controlling pests. In the present study, the induction of resistance was investigated in eggplant using root and foliar application of jasmonic acid, abscisic acid, as well as Nesidiocoris tenuis (Reuter) either individually or in combination against T. vaporariorum. The experiments were carried out under laboratory conditions inside a growth chamber, which was set at 27 ± 2°C, 50 ± 5% relative humidity with a 16 h day length. Our results showed an increase in plant resistance due to the higher immature mortality rates, longer immature periods, lower longevity of adults, and fecundity. In free-choice situation, oviposition on root jasmonic acid (RJA) + N. tenuis and root abscisic acid (RABA) + N. tenuis was similar, but numbers of eggs deposited on these plants were lower than other treatments and control plants. The plant enzyme activity and phenolic content were significantly greater in RJA + N. tenuis and RABA + N. tenuis, intermediate in individual treatments, and the lowest in control plants. Correspondingly, T. vaporariorum longevity, number of eggs produced per female, oviposition preference, all were lowest when the insects fed on these treatments. These findings suggest that the induction of resistance in eggplants with the physiological changes in the host plant leads to a reduction in whitefly damage.


2012 ◽  
Vol 41 (Special Issue) ◽  
pp. 273-280
Author(s):  
S.S. Moosavi ◽  
B. Yazdi Samadi ◽  
A. Zali ◽  
M. Ghannadha ◽  
Omidim ◽  
...  

see the full text


Sign in / Sign up

Export Citation Format

Share Document