A comparison of Hordeum bulbosum-mediated haploid production efficiency in barley using in vitro floret and tiller culture

1989 ◽  
Vol 77 (5) ◽  
pp. 701-704 ◽  
Author(s):  
F. Q. Chen ◽  
P. M. Hayes
Genome ◽  
1992 ◽  
Vol 35 (5) ◽  
pp. 799-805 ◽  
Author(s):  
F. Q. Chen ◽  
P. M. Hayes

Low seed set, owing to partial incompatibility, can limit sexual gene transfer and haploid production efficiency in wide crosses. The inheritance of partial incompatibility in barley Hordeum vulgare L. × H. bulbosum L. crosses and its effect on gamete sampling in doubled haploid production were studied by doubled haploid progeny analysis. The dominant, monogenic control of partial incompatibility in 'Vada' was confirmed. Partial incompatibility in 'Harrington' is also monogenic but appears to be controlled by a different gene. An association between the Inc gene and a deficiency in a stigma–stylodium specific high pI protein was found in the co-segregation analysis of doubled haploid progeny. Segregation analysis of Mendelian markers in doubled haploid progeny showed that there is no evidence that the compatibility status of the parents has an effect on gamete sampling by the bulbosum technique.Key words: barley, haploids, Hordeum bulbosum, incompatibility.


2011 ◽  
Vol 23 (1) ◽  
pp. 238
Author(s):  
H. Hayakawa ◽  
T.-I. Hirata

Cell sorting is an important part of the sperm sexing process. The objective of this study was to compare the efficiency of in vitro embryo production using sexed frozen–thawed bull sperm sorted with 2 types of cell sorter. Ejaculates from 2 Bos taurus (Holstein, 5 years old) bulls underwent conventional processing (control) or sorting for X chromosome bearing sperm using MoFlo® SX (SX, Dako, Fort Collins, CO, USA) or MoFlo® XDP-SX (XDP, Beckman Coulter, Fullerton, CA, USA) following XY™ sperm-sorting protocols. Processed sperm samples were cryopreserved in 0.5-mL plastic straws. Cumulus–oocyte complexes obtained from abattoir-derived ovaries were matured for 20 h in HEPES–TCM-199 (Lu and Seidel 2004 Theriogenology 62, 819–830) and randomly assigned to each of 3 sperm treatment groups. Thawed sperm were centrifuged for 20 min at 448 × g through an ISolate® (Irvine Scientific, Santa Ana, CA, USA) gradient (45:90%). Sperm pellets were washed in IVF100 (Hoshi 2003 Theriogenology 59, 675–685) by centrifugation for 5 min at 252 × g. Oocytes were co-incubated with washed sperm (5 to 10 × 106 sperm mL–1) in IVF100 (Hoshi 2003 Theriogenology 59, 675–685) for 8 h at 38.5°C in 5% CO2 and 95% air (Day 0). Presumptive zygotes were cultured for 90 h in CDM-1 (Lu and Seidel 2004 Theriogenology 62, 819–830) and then washed and cultured in IVD101 (Hoshi 2003 Theriogenology 59, 675–685) at 38.5°C in 5% CO2, 5% O2, and 90% N2. Cleavage rates on Day 2 and blastocyst rates on Day 7 to 9 were recorded after insemination. Two-way ANOVA was used for data analysis, followed by Fisher’s PLSD test. Experiments were replicated 4 times for bull A (total of 1 350 oocytes used) and 5 times for bull B (total of 1 529 oocytes used). The data are summarised in Table 1. No interaction was observed between the treatments and bulls. Cleavage rates were not significantly different in the 3 treatment groups. However, blastocyst rates were significantly lower in both SX (P < 0.001) and XDP (P < 0.002) groups than in control groups for both bulls but not different between SX and XDP (P > 0.8). Bull B showed significantly poorer results than bull A regarding both cleavage (P < 0.003) and blastocyst (P < 0.02) rates. MoFlo® SX (analogue processing) has been used for a decade, and XDP (digital processing) is the replacement model with its accelerated sorting speed. The current results indicated that the in vitro embryo production efficiency did not differ between sperm sorted with either SX or XDP. We suggest that sperm can be sorted using XDP without compromising sperm health. Table 1.Cleavage and blastocyst rates after IVF with 2 Holstein bulls for three sperm treatments


2012 ◽  
Vol 24 (1) ◽  
pp. 138
Author(s):  
L. Boccia ◽  
M. Rubessa ◽  
M. De Blasi ◽  
S. Di Francesco ◽  
G. Albero ◽  
...  

Although in vitro embryo production efficiency in buffalos has greatly improved over the years, the in vitro-produced embryos show lower viability and resistance to cryopreservation. Therefore, it is necessary to optimize the in vitro culture conditions to improve embryo quality. Hyaluronic acid, a glycosaminoglican present in oviducal and uterine fluids, has been shown to successfully support in vitro development of bovine embryos (Stojkovic et al. 2002 Reproduction 124, 141–153). The aim of this study was to evaluate the influence of high concentrations of hyaluronic acid (HA) during late in vitro culture on blastocyst development, as well as on their cryotolerance after cryotop vitrification in buffalos. In vitro matured and fertilized buffalo oocytes (n = 1007) from slaughterhouse ovaries were cultured for 4 days in SOFaa supplemented by 8 mg mL–1 of BSA in a controlled gas atmosphere consisting of 5% CO2, 7% O2 and 88% N2, in humidified air, at 38.5°C. On Day 4, cleavage rate was assessed (75.2%) and all of the cleaved elements were divided into 3 different late culture groups: 8 mg mL–1 of BSA (n = 244; group A), 8 mg mL–1 of BSA supplemented by 6 mg mL–1 of HA (n = 251; group B) and 1 mg mL–1 of BSA supplemented by 6 mg mL–1 of HA (n = 262; group C). On Day 7 after IVF, embryo outcome was assessed and all of the embryos were vitrified by cryotop [De Rosa et al. 2007 Ital. J. Anim. Sci. 6 (Suppl 2), 747–750] and cultured for 24 h. The resistance to cryopreservation was evaluated by assessing the survival rate on the basis of morphological criteria and the percentage of embryos reaching a more advanced developmental stage after 24 h culture. Data were analysed by the chi-square test. No differences in blastocyst rate were recorded among groups (43.9, 44.3 and 40.0%, respectively in A, B and C groups). However, out of the total embryos, a higher percentage of Grade 1 hatched blastocysts (Robertson and Nelson 1998 Manual of the International Embryo Transfer Society 9, 103–16) was observed in group C (P < 0.05) than in groups A and B (14.3, 18.8 and 25.5% in A, B and C groups, respectively). Although the supplementation with HA did not improve the survival rates following vitrification-warming (51.1, 59.4 and 58.4% in A, B and C groups, respectively), the percentage of vitrified-warmed embryos that resumed development and reached a more advanced developmental stage after culture increased (P < 0.01) in group C (20.7, 27.7 and 37.6% in A, B and C groups, respectively). In conclusion, the addition of 6 mg mL–1 of HA, together with a limited protein source (i.e. 1 mg mL–1 of BSA), during late culture improved buffalo embryo quality, indicated by both the greater percentage of advanced-stage embryos and by the resumption of development after post-warming culture.


2007 ◽  
Vol 19 (1) ◽  
pp. 276 ◽  
Author(s):  
L. Boccia ◽  
L. Attanasio ◽  
A. De Rosa ◽  
G. Pellerano ◽  
R. Di Palo ◽  
...  

The overall in vitro embryo production efficiency in buffalo is hampered by the poor fertilization rate. It is known that the quality of the frozen semen may affect fertilization efficiency. However, it is not possible to rule out that the process of capacitation, required by spermatozoa to acquire the fertilizing ability, is impaired in the in vitro fertilization (IVF) system. Although several agents have been proven to induce sperm capacitation in vitro, heparin treatment is still the most efficient method in most of the domestic species. There is evidence that capacitation is part of an oxidative process and that nitric oxide (NO) acts as a capacitation inducer in human (Herrero et al. 1999 Biol. Reprod. 61, 575–581) and bovine (Rodriguez et al. 2005 Anim. Reprod. Sci. 85, 231–242) spermatozoa. The aim of the present study was to evaluate whether sodium nitroprusside (SNP), a well-known generator of NO in vitro, improves buffalo sperm capacitation in vitro. Frozen–thawed sperm from a bull previously tested for IVF were treated by swim-up in order to select only the motile population. Spermatozoa were incubated in the presence of 0.01 mM heparin (control group) for 1 h (n = 266), 2 h (n = 270), and 3 h (n = 306), and in the presence of 10 �M SNP for 1 h (n = 302), 2 h (n = 286), and 3 h (n = 260). The concentration of SNP was chosen on the basis of a preliminary dose-response trial (0.1 �M, 1 �M, and 10 �M). Following incubation with these agents, sperm were exposed for 15 min to 60 �g mL-1 of lysophosphatidylcholine, an agent known to induce acrosome reaction only on capacitated spermatozoa. Trypan blue was used first to differentiate live from dead spermatozoa and the dried smears were then fixed in 37% formaldehyde and stained with Giemsa for acrosome evaluation by microscopic examination. The proportion of acrosome-reacted spermatozoa in each group was used to assess the efficiency of capacitation under different incubation conditions. Differences between groups were analyzed by chi-squared test. No dead spermatozoa were found in all groups. Following 1-h sperm treatment with either heparin or SNP, the proportion of acrosome-reacted spermatozoa was similar (35.3% vs. 28.5%, respectively). However, extending the incubation time to 2 h, SNP significantly (P &lt; 0.01) increased the incidence of acrosome reaction compared to heparin (60.1% vs. 44.1%, respectively). Analogously, when the sperm treatment was prolonged to 3 h, SNP gave a significantly (P &lt; 0.01) higher percentage of acrosome reaction compared to the control (68.8% vs. 36.6%, respectively). In conclusion, sperm treatment with SNP for either 2 or 3 h significant improved the efficiency of buffalo sperm capacitation in vitro compared with heparin, that is, the capacitating agent currently used in the IVF system. The promoting effect of SNP indirectly indicates that NO acts as a capacitation inducer in buffalo spermatozoa. Finally, these results suggest the need to evaluate the effect of SNP on the fertilizing capability of buffalo spermatozoa in vitro.


Euphytica ◽  
2020 ◽  
Vol 216 (5) ◽  
Author(s):  
Mohsen Niazian ◽  
Mehran E. Shariatpanahi

2000 ◽  
Vol 54 (9) ◽  
pp. 1409-1420 ◽  
Author(s):  
T. Numabe ◽  
T. Oikawa ◽  
T. Kikuchi ◽  
T. Horiuchi

2016 ◽  
Vol 9 (3) ◽  
pp. 419-433 ◽  
Author(s):  
E. Wielogórska ◽  
S. MacDonald ◽  
C.T. Elliott

In the recent years, mycotoxins have undoubtedly gained a keen interest of the scientific community studying food safety. The main reason is their profound impact on both human and animal health. International surveys reveal a low percentage of feed samples being contaminated above permitted/guideline levels, developed to protect consumers of animal derived products. However, the deleterious impact of feed co-contaminated at low levels with numerous both known and regulated as well as novel mycotoxins on producing animals has been described. Associated effects on agro-economics world-wide include substantial pecuniary losses which are borne by the society as a whole. Even though good agronomic practice is thought to be the most effective way of preventing animal feed contamination, the EC have recognised the need to introduce an additional means of management of feed already contaminated with low-levels of mycotoxins to alleviate detrimental effects on agricultural production efficiency. This review discusses types of feed detoxifying agents described in scientific literature, their reported efficacy in both in vitro and in vivo systems, and comparison with available commercial formulations in the light of increasing knowledge regarding mycotoxin prevalence in the changing global environment.


Zygote ◽  
2008 ◽  
Vol 16 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Z. Reckova ◽  
M. Machatkova ◽  
R. Rybar ◽  
J. Horakova ◽  
P. Hulinska ◽  
...  

SummaryThe efficiency of in vitro embryo production is highly variable amongst individual sires in cattle. To eliminate that this variability is not caused by sperm chromatin damage caused by separation or capacitacion, chromatin integrity was evaluated. Seventeen of AI bulls with good NRRs but variable embryo production efficiency were used. For each bull, motile spermatozoa were separated on a Percoll gradient, resuspended in IVF–TALP medium and capacitated with or incubated without heparin for 6 h. Samples before and after separation and after 3-h and 6-h capacitacion or incubation were evaluated by the Sperm Chromatin Structure Assay (SCSA) and the proportion of sperm with intact chromatin structure was calculated. Based on changes in the non-DFI-sperm proportion, the sires were categorized as DNA-unstable (DNA-us), DNA-stable (DNA-s) and DNA-most stable (DNA-ms) bulls (n = 3, n = 5 and n = 9, respectively). In DNA-us bulls, separation produced a significant increase of the mean non-DFI-sperm proportion (p ≤ 0.01), as compared with the value before separation. Capacitacion produced a significant decrease in the mean non-DFI-sperm proportion in H+ sperm (p ≤ 0.01). In DNA-s bulls, separation significantly increased the mean non-DFI-sperm proportion (p ≤ 0.01) but during capacitacion, the mean non-DFI-sperm proportion remained almost unchanged. In DNA-ms bulls, neither separation nor capacitacion had any effect on the mean non-DFI-sperm proportion. It can be concluded that, although separation and capacitacion may produce some changes in sperm chromatin integrity, these are not associated with different in vitro fertility of the bulls involved.


Sign in / Sign up

Export Citation Format

Share Document