Kinetics of metal removal by chelating resin from a complex synthetic wastewater

1984 ◽  
Vol 22 (4) ◽  
Author(s):  
V. Tare ◽  
S.B. Karra ◽  
C.N. Haas
2020 ◽  
Vol 81 (12) ◽  
pp. 2568-2584
Author(s):  
Caroline Lomalungelo Dlamini ◽  
Lueta-Ann De Kock ◽  
Kebede Keterew Kefeni ◽  
Bhekie Brilliance Mamba ◽  
Titus Alfred Makudali Msagati

Abstract Iron (Fe), zirconium (Zr) and titanium (Ti) oxides nanoparticles were each embedded onto a weak acid chelating resin for support using the precipitation method to generate three hybrid adsorbents of hydrated Fe oxide (HFO-P), hydrated Zr oxide (HZO-P) and hydrated Ti oxide (HTO-P). This paper reports on the characterization, performance and potential of these generated nanoadsorbents in the removal of toxic metal ions from acid mine drainage (AMD). The optimum contact time, adsorbent dose and pH for aluminium (Al) (III) adsorption were established using the batch equilibrium technique. The metal levels were measured using inductively coupled plasma-optical emission spectrometry. The scanning electron microscopy–energy dispersive X-ray spectroscopy results confirmed the presence of the metal oxides within the hybrid resin beads. HFO-P, HZO-P and HTO-P adsorbed Al(III) rapidly from synthetic water with maximum adsorption capacities of 54.04, 58.36 and 40.10 mg/g, respectively, at initial pH 1.80 ± 0.02. The adsorption of Al(III) is of the second-order in nature (R2 > 0.98). The nanosorbents removed ten selected metals from environmental AMD and the metal removal efficiency was in the order HTO-P > HZO-P > HFO-P. All three hybrid nanosorbents can be used to remove metals from AMD; the choice would be dependent on the pH of the water to be treated.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Çiğdem Kıvılcımdan Moral ◽  
Merve Yıldız

Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely,AzotobacterandPseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Nurul Shuhada Mohd Makhtar ◽  
Juferi Idris ◽  
Mohibah Musa ◽  
Yoshito Andou ◽  
Ku Halim Ku Hamid ◽  
...  

High removal of heavy metals using plant-based bioflocculant under low concentration is required due to its low cost, abundant source, and nontoxicity for improved wastewater management and utilization in the water industry. This paper presents a treatment of synthetic wastewater using plant-based Tacca leontopetaloides biopolymer flocculant (TBPF) without modification on its structural polymer chains. It produced a high removal of heavy metals (Zn, Pb, Ni, and Cd) at a low concentration of TBPF dosage. In our previous report, TBPF was characterized and successfully reduced the turbidity, total suspended solids, and color for leachate treatment; however, its effectiveness for heavy metal removal has not been reported. The removal of these heavy metals was performed using a standard jar test procedure at different pH values of synthetic wastewater and TBPF dosages. The effects of hydroxide ion, pH, initial TBPF concentration, initial metal ion concentration, and TBPF dosage were examined using one factorial at the time (OFAT). The results show that the highest removal for Zn, Pb, Ni, and Cd metal ions were 98.4–98.5%, 79–80%, 97–98%, and 92–93%, respectively, using 120 mg/L dosage from the initial concentration of 10% TBPF at pH 10. The final concentrations for Zn, Pb, Ni, and Cd metal ions were 0.043–0.044, 0.41–0.43, 0.037–0.054, and 0.11–0.13 mg/L, respectively, which are below the Standard B discharge limit set by the Department of Environment (DOE), Malaysia. The results show that TBPF has a high potential for the removal of heavy metals, particularly Zn, Pb, Ni, and Cd, in real wastewater treatment.


2015 ◽  
Vol 773-774 ◽  
pp. 1286-1290 ◽  
Author(s):  
M.F.H. Azizul-Rahman ◽  
A.A. Mohd Suhaimi ◽  
Norzila Othman

The heavy metal contain in the industrial wastewater can cause a pollution towards the environment and human due to its toxicity. Therefore extensive studies were conducted for the heavy metal removal. This study was conducted under several conditions by varying pH, biosorbent dosage, initial wastewater concentration and contact time. The results revealed that optimum pH, for high strength synthetic wastewater was 8.0 meanwhile for low strength synthetic wastewater was 7.0. Both high and low strength synthetic wastewater was optimum at 30 minutes of contact time with 1.5g and 0.02g of bisorbent dosage respectively. Meanwhile, the optimum initial metal concentration for high and low strength synthetic wastewater was 400ppm and 1ppm respectively. The results had proven that watermelon rind is able to treat wastewater with high and low concentration of metal.


2014 ◽  
Vol 95 ◽  
pp. 336-338 ◽  
Author(s):  
K.N. Suzuki ◽  
E.C. Machado ◽  
W. Machado ◽  
A.V.B. Bellido ◽  
L.F. Bellido ◽  
...  

2006 ◽  
Vol 54 (2) ◽  
pp. 179-185 ◽  
Author(s):  
R. Sierra-Alvarez ◽  
S. Karri ◽  
S. Freeman ◽  
J.A. Field

The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 mg Cu2+l−1; 10 mg Ni2+l−1, 10 mg Zn2+l−1) increased the effluent pH level to 7.0–7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l−1 of reactor d−1. The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 553
Author(s):  
Vikneswara A. Shanmugan ◽  
Radin M.S.R. Mohammed ◽  
Amir H.B.M. Kassim ◽  
Adel A.S. Al-Gheethi ◽  
Nur A.A. Latiffi

Disposed meat processing wastewater contains high range of nutrients such as ammonia nitrogen and orthophosphate which will cause eutrophication and lead to destruction of ecosystem. Therefore, batch experiments were conducted to explore the influence of the range of initial concentration of ammonia nitrogen and orthophosphate found in meat processing wastewater in the removal of those nutrients during phycoremediation of synthetic wastewater by using microalgae Botryococcus sp. Michaelis-Menten rate expression was applied to generate biokinetic coefficients k, reaction rate constant, Km, half saturation constant and Y, yield coefficients. The experiment was conducted using synthetic wastewater with initial NH4-N concentration varying between 30-480 mg/l and PO43- concentrations varying between 14-239 mg/l. The results demonstrate removal efficiency of NH4-N between 42-100 % and PO43- between 63-96 %. Biokinetic coefficients were established as k = 1.72 mg NH4-N /mg chl a/day, Km = 52.29 mg/L and YN = 0.027 mg chl a/mg NH4-N for ammonia nitrogen and k = 1.13 mg PO43-/mg chl a/day, Km = 44.45 mg/L and YP = 0.038 mg chl a/mg PO43- for orthophosphate.  


Sign in / Sign up

Export Citation Format

Share Document