Kinetochore structure was examined in a total of 6 species from 5 different families of the Coleoptera using transmission electron microscopy of ultrathin serial sections. Metaphase spermatogonia and primary and secondary spermatocytes were studied in Tenebrio molitor (Tenebrionidae) to determine whether kinetochore structure varies depending on the cell type. In all three cell types, the kinetochore microtubules (MTs) were in direct contact with the chromosomal surface, and kinetochore plates were not detectable. In the other species, only metaphase I spermatocytes were examined. As in T. molitor, distinct kinetochore plates were also absent in Adelocera murina (Elateridae), Agapanthia villosoviridescens (Cerambycidae), and Coccinella septempunctata (Coccinellidae). However, bivalents in male meiosis of two representatives of the Chrysomelidae, Agelastica alni and Chrysolina graminis, showed roughly spherical kinetochores at their poleward surfaces. Microtubules were in contact with this material. Thus, although the present survey covers only a small number of species, it is clear that at least two kinetochore types occur in the Coleoptera. The cytological findings are discussed in the context of chromosome number and genome size variability in the Coleopteran families studied. It is suggested that properties of the kinetochores could play a role in karyotype evolution in the Coleoptera.Key words: bivalent, microtubule, meiosis, metaphase, spermatocyte.