Yeast proteins can activate expression through regulatory sequences of the amdS gene of Aspergillus nidulans

1995 ◽  
Vol 246 (2) ◽  
pp. 223-227 ◽  
Author(s):  
Nathalie Bonnefoy ◽  
Jane Copsey ◽  
Michael J. Hynes ◽  
Mervl A. Davis
Gene ◽  
1987 ◽  
Vol 53 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Catherine M. Corrick ◽  
Andrea P. Twomey ◽  
Michael J. Hynes

2016 ◽  
Vol 7 ◽  
Author(s):  
Sara Domínguez ◽  
M. Belén Rubio ◽  
Rosa E. Cardoza ◽  
Santiago Gutiérrez ◽  
Carlos Nicolás ◽  
...  

1995 ◽  
Vol 73 (S1) ◽  
pp. 876-884 ◽  
Author(s):  
William E. Hintz ◽  
Inge Kalsner ◽  
Ewa Plawinski ◽  
Zimin Guo ◽  
Peter A. Lagosky

A variety of gene expression systems have been developed that utilize the promoter and transcriptional regulatory sequences derived from carbon-catabolite repressed genes for the expression of heterologous genes. The alcA expression system of Aspergillus nidulans utilizes the promoter and regulatory sequences derived from the alcohol dehydrogenase I (alcA) gene. Expression of the alcA gene is repressed by a DNA-binding protein (CreA) in the presence of glucose and induced by ethanol under glucose-depleted conditions. One problem encountered during the expression of therapeutic proteins in A. nidulans is the coexpression of secreted proteases at the time of maximal secretion of heterologous product. To avoid the proteases we created an alcA promoter variant that is no longer sensitive to glucose repression hence could drive expression at earlier time points during the fermentation. The use of this promoter variant in the expression of recombinant interleukin-6 is discussed. A second problem encountered during the expression of high-quality human therapeutic proteins in Aspergillus is aberrant glycosylation. Lower eukaryotic systems, such as Aspergillus, tend to add highly branched mannosidic chains to heterologous secreted protein products. N-Glycans can be important for both the structure and function of specific glycoproteins, hence efforts are being made to in vivo alter the type and complexity of N-glycans substituted by A. nidulans. Key words: Aspergillus, gene expression, alcohol dehydrogenase, glycosylation.


2021 ◽  
Vol 7 (8) ◽  
pp. 600
Author(s):  
Oier Etxebeste

Gene regulatory networks (GRNs) are shaped by the democratic/hierarchical relationships among transcription factors (TFs) and associated proteins, together with the cis-regulatory sequences (CRSs) bound by these TFs at target promoters. GRNs control all cellular processes, including metabolism, stress response, growth and development. Due to the ability to modify morphogenetic and developmental patterns, there is the consensus view that the reorganization of GRNs is a driving force of species evolution and differentiation. GRNs are rewired through events including the duplication of TF-coding genes, their divergent sequence evolution and the gain/loss/modification of CRSs. Fungi (mainly Saccharomycotina) have served as a reference kingdom for the study of GRN evolution. Here, I studied the genes predicted to encode TFs in the fungus Aspergillus nidulans (Pezizomycotina). The analysis of the expansion of different families of TFs suggests that the duplication of TFs impacts the species level, and that the expansion in Zn2Cys6 TFs is mainly due to dispersed duplication events. Comparison of genomic annotation and transcriptomic data suggest that a significant percentage of genes should be re-annotated, while many others remain silent. Finally, a new regulator of growth and development is identified and characterized. Overall, this study establishes a novel theoretical framework in synthetic biology, as the overexpression of silent TF forms would provide additional tools to assess how GRNs are rewired.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 585-591 ◽  
Author(s):  
G Faugeron ◽  
L Rhounim ◽  
J L Rossignol

Abstract Repeated genes, artificially introduced in Ascobolus immersus by integrative transformation, are frequently inactivated during the sexual phase. Inactivation is observed in about 50% of meioses if duplicated genes are at ectopic chromosomal locations, and in 90% of meioses if genes are tandemly repeated. Inactivation is associated with extensive methylation of the cytosine residues of the duplicated sequences and is induced in the still haploid nuclei of the dikaryotic cell which will undergo karyogamy and subsequent meiosis. Only repeated sequences become methylated. This raises the intriguing question of how the premeiotic inactivation machinery is informed that a nucleus contains multiple copies of a gene. By using in crosses recombinant strains of A. immersus in which either one, two or three genetically independent copies of the exogenous amdS gene from Aspergillus nidulans had been introduced, we could follow the premeiotic inactivation of each one of the ectopic amdS copies. This led us to propose that a prerequisite for inactivation is a premeiotic pairing of repeated sequences and that each copy can undergo successive cycles of pairing. In fact, once methylated, a copy can pair with a still unmethylated copy, so that an uneven number of copies can be subject to inactivation.


1988 ◽  
Vol 8 (6) ◽  
pp. 2589-2596
Author(s):  
M J Hynes ◽  
C M Corrick ◽  
J M Kelly ◽  
T G Littlejohn

The amdS gene of Aspergillus nidulans, which encodes an acetamidase enzyme, is positively regulated by the trans-acting genes amdR, facB, amdA, and areA. Sequence changes in several cis-acting mutations in the 5' region of the gene which specifically affect amdS regulation were determined. The amdI9 mutation, which results in increased facB-dependent acetate induction, is due to a single-base change at base pair -210 relative to the start point of translation. The amdI93 mutation, which abolishes amdR-dependent omega-amino acid induction, is a deletion of base pairs -181 to -151. The amdI66 mutation, which causes increased gene activation in strains carrying amdA regulatory gene mutations, is a duplication of base pairs -107 to -90. Transformation of A. nidulans can generate transformants containing multiple integrated copies of plasmid sequences. When these plasmids carry a potential binding site for a regulatory gene product, growth on substrates whose catabolism requires genes activated by that regulatory gene can be reduced, apparently because of titration of the regulatory gene product. Introduction of 5' amdS sequences via cotransformation into strains of various genotypes was used to localize sequences apparently involved in binding of the products of the amdR, amdA, and facB genes. The position of these sequences is in agreement with the positions of the specific cis-acting mutations. Consistent with these results, a transformant of A. nidulans derived from a plasmid deleted for sequences upstream from -111 was found to have lost amdR- and facB-mediated control but was still regulated by the amdA gene. In addition, amdS expression in this transformant was still dependent on the areA gene.


1983 ◽  
Vol 3 (8) ◽  
pp. 1430-1439 ◽  
Author(s):  
M J Hynes ◽  
C M Corrick ◽  
J A King

Previous analysis of the amdS gene of Aspergillus nidulans has identified multiple regulatory circuits mediated by trans-acting regulatory genes, cis-acting mutations have been identified and shown to specifically affect individual regulatory circuits. Fine-structure genetic mapping of the amdS regions showed that these cis-acting mutations occur in a complex controlling region adjacent to the amdS structural gene. The amdS gene was cloned by differential hybridization, using cDNA probes derived from a high-level-producing strain and from a strain with a large amdS deletion mutation. RNA blotting experiments showed that a single RNA species of 1,600 to 1,700 base pairs is transcribed from the amdS gene. DNA blotting experiments on a large number of amdS mutant strains, including deletions and translocations, allowed the genetic and physical maps of the gene to be correlated. The controlling region of the gene is situated at the 5' end of the gene and the direction of transcription is toward the centromere of chromosome III. The regulatory mutations in the controlling region were found to be due to small-scale alterations in the DNA rather than to large-scale rearrangements resulting in gene fusions.


Sign in / Sign up

Export Citation Format

Share Document