scholarly journals Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene

2016 ◽  
Vol 7 ◽  
Author(s):  
Sara Domínguez ◽  
M. Belén Rubio ◽  
Rosa E. Cardoza ◽  
Santiago Gutiérrez ◽  
Carlos Nicolás ◽  
...  
Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 771 ◽  
Author(s):  
Petronia Carillo ◽  
Sheridan L. Woo ◽  
Ernesto Comite ◽  
Christophe El-Nakhel ◽  
Youssef Rouphael ◽  
...  

Many Trichoderma are successfully used to improve agriculture productivity due to their capacity for biocontrol and to stimulate plant growth and tolerance to abiotic stress. This research elucidates the effect of applications with Trichoderma harzianum strain T22 (T22), or biopolymer (BP) alone or in combination (BP + T22 or BP + 6-pentyl-α-pyrone (6PP); a Trichoderma secondary metabolite) on the crop performance, nutritional and functional quality of greenhouse tomato (Solanum lycopersicum L. cultivar Pixel). T22 elicited significant increases in total yield (+40.1%) compared to untreated tomato. The content of lycopene, an important antioxidant compound in tomatoes, significantly increased upon treatment with T22 (+ 49%), BP + T22 (+ 40%) and BP + 6PP (+ 52%) compared to the control. T22 treatments significantly increased the content of asparagine (+37%), GABA (+87%) and MEA (+102%) over the control; whereas BP alone strongly increased GABA (+105%) and MEA (+85%). The synthesis of these compounds implies that tomato plants are able to reuse the photorespiratory amino acids and ammonium for producing useful metabolites and reduce the pressure of photorespiration on plant metabolism, thus optimizing photosynthesis and growth. Finally, these metabolites exert many beneficial effects for human health, thus enhancing the premium quality of plum tomatoes.


1995 ◽  
Vol 246 (2) ◽  
pp. 223-227 ◽  
Author(s):  
Nathalie Bonnefoy ◽  
Jane Copsey ◽  
Michael J. Hynes ◽  
Mervl A. Davis

Plant Biology ◽  
2009 ◽  
Vol 11 (5) ◽  
pp. 671-677 ◽  
Author(s):  
L. M. Cervilla ◽  
B. Blasco ◽  
J. J. Ríos ◽  
M. A. Rosales ◽  
M. M. Rubio-Wilhelmi ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Liu Yan ◽  
Raja Asad Ali Khan

Abstract Background Ralstonia solanacearum causes bacterial wilt disease in tomato and other crops resulting in huge economic losses worldwide. Several measures have been explored for the control of R. solanacearum, but the desired control level of the disease through sustainable and ecofriendly way is still awaited. Main body In this study, fungal metabolites produced by Trichoderma harzianum were investigated in the form of crude extract for the management of R. solanacearum both in vitro and in planta in tomato plants. In in vitro investigation, fungal metabolites were checked for their antibacterial potential at different concentrations (30, 60, 90, 120, 150, and 180 mg ml−1) and bacterial cell morphology was observed under scanning electron microscopy (SEM). In a greenhouse experiment, different application times (0, 3, and 6 days before transplantation DBT) and doses (0, 3, 6, and 9%) of the fungal metabolites were tested for their effects on soil bacterial population, disease severity and plant growth of tomato plants. The in vitro evaluation showed a strong antibacterial activity of fungal metabolites in concentration dependent manner. The highest concentration 180 mg ml−1 produced maximum inhibition zone (20.2 mm) having non-significant difference with the inhibition zone (20.5 mm) produced by the standard antibiotic streptomycin. The SEM analysis revealed severe morphological destructions of bacterial cells. In case of greenhouse experiment, the highest decrease in soil bacterial population, lowest disease severity, and maximum increase in plant growth parameters were obtained by highest dose (9%) and longest application time (6 DBT). Conclusion The fungal metabolites produced by T. harzianum could be used as low-cost, environment-friendly, and sustainable management strategy for the control of R. solanacearum in tomato plants.


2018 ◽  
Vol 19 (12) ◽  
pp. 4046 ◽  
Author(s):  
Fei Ding ◽  
Qiannan Hu ◽  
Meiling Wang ◽  
Shuoxin Zhang

Sedoheptulose-1,7-bisphosphatase (SBPase) is an enzyme in the Calvin–Benson cycle and has been documented to be important in carbon assimilation, growth and stress tolerance in plants. However, information on the impact of SBPase on carbon assimilation and nitrogen metabolism in tomato plants (Solanum lycopersicum) is rather limited. In the present study, we investigated the role of SBPase in carbon assimilation and nitrogen metabolism in tomato plants by knocking out SBPase gene SlSBPASE using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing technology. Compared with wild-type plants, slsbpase mutant plants displayed severe growth retardation. Further analyses showed that knockout of SlSBPASE led to a substantial reduction in SBPase activity and as a consequence, ribulose-1,5-bisphosphate (RuBP) regeneration and carbon assimilation rate were dramatically inhibited in slsbpase mutant plants. It was further observed that much lower levels of sucrose and starch were accumulated in slsbpase mutant plants than their wild-type counterparts during the photoperiod. Intriguingly, mutation in SlSBPASE altered nitrogen metabolism as demonstrated by changes in levels of protein and amino acids and activities of nitrogen metabolic enzymes. Collectively, our data suggest that SlSBPASE is required for optimal growth, carbon assimilation and nitrogen metabolism in tomato plants.


Sign in / Sign up

Export Citation Format

Share Document