Inheritance of somatic embryogenesis and organ regeneration from immature embryo cultures of winter wheat

1989 ◽  
Vol 78 (1) ◽  
pp. 137-142 ◽  
Author(s):  
G. Ou ◽  
W. C. Wang ◽  
H. T. Nguyen
2021 ◽  
Vol 22 (10) ◽  
pp. 5310
Author(s):  
Eduardo Luján-Soto ◽  
Vasti T. Juárez-González ◽  
José L. Reyes ◽  
Tzvetanka D. Dinkova

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. While several targets have been described for this miRNA, the regulation has not been experimentally confirmed for the SE process. Here, we explored the accumulation of zma-miR528 and several predicted targets during embryogenic callus induction, proliferation, and plantlet regeneration using the maize cultivar VS-535. We confirmed the cleavage site for all tested zma-miR528 targets; however, PLC1 showed very low levels of processing. The abundance of zma-miR528 slightly decreased in one month-induced callus compared to the immature embryo (IE) explant tissue. However, it displayed a significant increase in four-month sub-cultured callus, coincident with proliferation establishment. In callus-regenerated plantlets, zma-miR528 greatly decreased to levels below those observed in the initial explant. Three of the target transcripts (MATE, bHLH, and SOD1a) showed an inverse correlation with the miRNA abundance in total RNA samples at all stages. Using polysome fractionation, zma-miR528 was detected in the polysome fraction and exhibited an inverse distribution with the PLC1 target, which was not observed at total RNA. Accordingly, we conclude that zma-miR528 regulates multiple target mRNAs during the SE process by promoting their degradation, translation inhibition or both.


2009 ◽  
Vol 56 (4) ◽  
pp. 540-545 ◽  
Author(s):  
N. Mitić ◽  
D. Dodig ◽  
R. Nikolić ◽  
S. Ninković ◽  
D. Vinterhalter ◽  
...  

2008 ◽  
Vol 13 (4) ◽  
pp. 363 ◽  
Author(s):  
R. MA ◽  
S. PULLI

Rye is an important crop in Northern and Eastern Europe. However, the application of various biotechnologies in rye breeding has been limited duo to its recalcitrant in tissue culture. In order to improve somatic tissue effi ciency, key factors affecting somatic embryogenesis and reproducible green plant regeneration of rye (Secale cereale L.) were evaluated and optimised. In this study, a total 27 rye genotypes including 10 spring and 17 winter genotypes were involved in the investigation. Genotype, culture medium, sugar, gel agent and auxin infl uenced somatic embryogenesis of immature embryo signifi cantly. One-two weeks cold pretreatment of young embryo enhanced somatic embryogenesis and green plant regeneration. In culture of immature embryos, infl orescences and leaf segments of the seedlings, explants signifi cantly infl uenced the culture effi ciency. Highest embryogenic callus yield resulted from rye immature embryo as explant compared to young infl orescence and leaf segment of seedling. Developmental stage of embryo played an important role in somatic embryogenesis. Late spherical coleoptile stage (embryo size 0.5–1mm in length) was optimal developmental stage of immature embryo for culture. Morphogenetic potential of embryogenic callus decreased with an increasing number of subcultures, and this ability could be maintained in vitro for a maximum of 8 months of culturing.;


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 883 ◽  
Author(s):  
Luan ◽  
He ◽  
Xie ◽  
Chen ◽  
Mao ◽  
...  

Plant tissue culture methods, such as somatic embryogenesis, are attractive alternatives to traditional breeding methods for plant propagation. However, they often suffer from limited efficiency. Somatic embryogenesis receptor kinase (SERK)1 is a marker gene of early somatic embryogenesis in several plants, including pineapple. It can be selectively induced and promotes a key step in somatic embryogenesis. We investigated the embryonic cell-specific transcriptional regulation of AcSERK1 by constructing a series of vectors carrying the GUS(Beta-glucuronidase) reporter gene under the control of different candidate cis-regulatory sequences. These vectors were transfected into both embryonic and non-embryonic callus, and three immature embryo stages and the embryonic-specific activity of the promoter fragments was analyzed. We found that the activity of the regulatory sequence of AcSERK1 lacking −983 nt ~−880 nt, which included the transcription initiation site, was significantly reduced in the embryonic callus of pineapple, accompanied by the loss of embryonic cell-specific promoter activity. Thus, this fragment is an essential functional segment with highly specific promoter activity for embryonic cells, and it is active only from the early stages of somatic embryo development to the globular embryo stage. This study lays the foundation for identifying mechanisms that enhance the efficiency of somatic embryogenesis in pineapple and other plants.


Sign in / Sign up

Export Citation Format

Share Document