Branch growth and leaf numbers of red maple (Acer rubrum L.) and red oak (Quercus rubra L.): response to defoliation

Oecologia ◽  
1984 ◽  
Vol 62 (1) ◽  
pp. 1-6 ◽  
Author(s):  
G. H. Heichel ◽  
Neil C. Turner

2017 ◽  
Vol 35 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Darby McGrath ◽  
Jason Henry ◽  
Ryan Munroe ◽  
Erin Agro

Abstract This experiment investigated the effect of different plug-tray cell designs on root development of red maple (Acer rubrum), red oak (Quercus rubra), and quaking aspen (Populus tremuloides) seedlings. In April of 2015, seeds of each species were sown into three plug trays with different substrate volumes and grown for 17 weeks. Two trays had permeable walls for air-pruning, one with vertical ribs and one without. The third tray had impermeable plastic cell walls. Harvested seedlings were analyzed for root dry weight, length, volume, surface area and number of deflected roots. Root length per volume was highest in the impermeable-walled tray for red maple and quaking aspen. The total numbers of deflected root systems were higher for all species in the impermeable-walled tray. Seedlings grown in the air-pruning trays had smaller proportions of deflected root masses. Greater substrate volume did not influence root deflection development. The air-pruning tray without vertical ribs had the lowest total number of root masses with misdirected roots and lower proportions of root masses with misdirected roots for all species. These results indicate that improved root architecture in root-air pruning tray designs is achievable in tree propagation; however, vertical plastic structures in air-pruning trays can still cause root deflections. Index words: Deflected roots, air-pruning, seedling, propagation, plugs, root architecture. Species used in the study: red maple (Acer rubrum L.); red oak (Quercus rubra L.); quaking aspen (Populus tremuloides Michx.).







1988 ◽  
Vol 12 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Neil I. Lamson

Abstract In northern West Virginia, 7-year-old American basswood (Tilia americana L.) and 12-year-old red maple (Acer rubrum L.), black cherry (Prunus serotina Ehrh.), and northern red oak (Quercus rubra L.) stump sprout clumps received one of four treatments: unthinned control; thinned to the best one or two codominant sprouts per clump; branch pruned up to 75% of total height; or thinned plus pruned. Analysis of 10-year growth data showed that height growth was not affected by any of the treatments. For all species, pruning slightly increased the length of clear stem and decreased periodic diameter growth. Thinning increased survival of basswood, red oak, and red maple crop stems. Thinning increased the 10-year diameter growth by 0.1 to 0.8 in. Recommendations for thinning 10- to 20-year-old sprout clumps are presented. Pruning is not recommended. In order to maintain maximum diameter growth, thinning individual sprout clumps should be followed by stand crop tree release in about 10 years. South. J. Appl. For. 12(1):23-27.



1983 ◽  
Vol 7 (2) ◽  
pp. 93-97 ◽  
Author(s):  
Neil I. Lamson

Abstract In West Virginia crop trees were selected from 7- or 12-year-old yellow-poplar (Liriodendron tulipifera L.), basswood (Tilia americana L.), red maple (Acer rubrum L.), black cherry (Prunus serotina Ehrh.), and northern red oak (Quercus rubra L.) stump sprouts. Crop trees were dominant or codominant, well-formed sprouts that originated not more than 6 inches above groundline and did not fork in the lower 17 feet. Four treatments were evaluated: (1) control; (2) thinning; (3) pruning; and (4) thinning plus pruning. Five years after treatment the diameter (d.b.h.) growth of thinned sprouts was 1.5 times greater than that of control sprouts. Pruning did not cause a significant decrease in five-year d.b.h. growth. Height growth was not affected by the treatments. Most of the epicormic branches produced by pruning were dead five years after treatment. Natural pruning was reduced by thinning; the average clear bole length of thinned sprouts was about 2 feet shorter than that of the control sprouts. Survival was nearly 100 percent.



2003 ◽  
Vol 27 (4) ◽  
pp. 264-268 ◽  
Author(s):  
Eric Heitzman

Abstract Since 1999, widespread and locally severe oak decline and mortality have occurred throughout the Ozark Mountains of northern Arkansas and southern Missouri. A contributing factor in the decline and mortality is an outbreak of the red oak borer [Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae)]. In northern Arkansas, a 2,150 ac mature oak forest severely affected by decline was selected as a case study to describe changes in species composition and stand structure and to assess regeneration potential of oaks and non-oak species. Mortality reduced total overstory basal area from 105 to 57 ft2/ac, and overstory density decreased from 156 to 89 trees/ac. Most dead and dying trees were northern red oak (Quercus rubra L.) and black oak (Q. velutina Lam.). Basal area and density of overstory red oaks were reduced from 51 to 11 ft2/ac and from 60 to 11 trees/ac, respectively. These trees died regardless of dbh class. Mortality was less common in white oak (Q. alba L.) and was generally limited to smaller trees. Understory trees and taller seedlings were predominantly red maple (Acer rubrum L.), flowering dogwood (Cornus florida L.), blackgum (Nyssa sylvatica Marsh.), and black cherry (Prunus serotina Ehrh.). Oaks less than 3 ft tall were abundant, but taller oak seedlings and saplings were uncommon. Tree mortality increased the proportion of white oak and hickories (Carya spp.) in the overstory, and stimulated a regeneration response of mostly non-oak species. South. J. Appl. For. 27(4):264–268.



2010 ◽  
Vol 27 (3) ◽  
pp. 105-109 ◽  
Author(s):  
Marc D. Abrams ◽  
Benjamin A. Sands

Abstract This research investigated overstory and understory forest composition for 10 sites derived from either shale or sandstone conglomerate parent material on the Shawangunk Ridge in eastern New York. Overstory composition in both soil types was dominated by red oak (Quercus rubra) and chestnut oak (Quercus montana), but the overstory on shale sites was more diverse (14 tree species) and had less oak than sandstone sites (with only 6 tree species). A total of 17 species were recorded as regeneration on shale sites, where seedlings averaged 21,466/ha and saplings averaged 1,833/ha. Dominant seedling on shale sites were chestnut oak (7,100/ha) and red oak (3,583/ha); chestnut oak had significantly more seedlings on shale versus sandstone sites. Saplings on shale sites were predominantly Hamamelis virginiana and Acer pensylvanicum. On sandstone sites, seedlings averaged 6,425/ha (including 2,075 oaks and 2,250 red maple per ha). Sapling numbers for all species were low (1,400/ha) and were mostly red maple. These forests are unique because of the relatively high density of oak seedlings on certain sites and low density of red maple across all sites. This variation in regeneration as well as management strategies to promote additional oak regeneration and canopy recruitment are discussed for these and similar forests.



Holzforschung ◽  
2000 ◽  
Vol 54 (6) ◽  
pp. 577-584 ◽  
Author(s):  
T. Stevanovic Janezic ◽  
P.A. Cooper ◽  
Y.T. Ung

Summary We have examined chromated copper arsenate (CCA) wood preservative fixation at two selected temperatures in seven common North American hardwood species: red maple (Acer rubrum L.), white birch (Betula papyrifera Marsh.), yellow poplar (Liriodendron tulipifera L.), trembling aspen (Populus tremuloides Michx.), red oak (Quercus rubra L.), basswood (Tilia americana L.) and American beech (Fagus grandifolia Ehrh.). The softwood red pine (Pinus resinosa Ait.) was included for comparison. CCA component fixation was monitored by the expressate method at both 21°C and 50°C under non-drying conditions. Hexavalent chromium (CrVI) and total Cr, Cu and As contents of the expressate were determined at different times during fixation. Based on CCA fixation results it was possible to divide the examined hardwoods into a fast fixing group (beech, red oak and red maple), intermediate group (white birch and red pine) and slow fixing group (aspen, yellow poplar and basswood). The variable fixation rates for the different species could not be directly related to different anatomical and chemical attributes of the studied hardwoods, although there was an apparent relationship with density with more dense species fixing faster than low density species. However, the species differences appeared to be mainly influenced by types and amounts of extractives in the woods. In red maple, extraction resulted in a slowing of the fixation rate, while the opposite effect was seen in red oak.



2019 ◽  
Vol 48 (5) ◽  
pp. 1162-1172
Author(s):  
Kaitlyn O’donnell ◽  
Joseph Elkinton ◽  
Charlene Donahue ◽  
Eleanor Groden

Abstract The winter moth, Operophtera brumata (L.) is an invasive forest and agricultural pest in North America that causes severe defoliation to a wide range of host species. This study examines the differential larval densities, development, and survival on seven host species in midcoast Maine: red oak (Quercus rubra L., Fagales: Fagaceae), apple (Malus domestica L., Rosales: Rosaceae) and crab apple (Malus sp. L., Rosales: Rosaceae), red maple (Acer rubrum L., Sapindales: Sapindaceae), pin cherry (Prunus pensylvanica L., Rosales: Rosaceae), white birch (Betula papyrifera L., Fagales: Betulaceae), wild lowbush blueberry (Vaccinium angustiflolium L., Ericales: Ericaceae), and highbush blueberry (Vaccinium corymbosum L., Ericales: Ericaceae). We also explore the degree of synchrony between selected host plants and larval hatch and its effect on survival. We found that densities, development, and survival were significantly greater on red oak (Quercus rubra) and apple (Malus sp.) than on all other target species and were lowest on pin cherry (Prunus pennsylvanica). We found low larval densities in open, wild lowbush blueberry fields; however, larvae successfully fed and developed on wild lowbush blueberry in a laboratory setting. This suggests that winter moth is a potential pest to wild lowbush blueberry in Maine if the outbreak expands to include areas with wild lowbush blueberry production.



Sign in / Sign up

Export Citation Format

Share Document