Transport-limited fermentation and growth of Saccharomyces cerevisiae and its competitive inhibition

1967 ◽  
Vol 58 (2) ◽  
pp. 155-168 ◽  
Author(s):  
N. Uden
2020 ◽  
Vol 16 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Chandrika Kadkol ◽  
Ian Macreadie

Background: Tryptamine, a biogenic monoamine that is present in trace levels in the mammalian central nervous system, has probable roles as a neurotransmitter and/or a neuromodulator and may be associated with various neuropsychiatric disorders. One of the ways tryptamine may affect the body is by the competitive inhibition of the attachment of tryptophan to tryptophanyl tRNA synthetases. Methods: This study has explored the effects of tryptamine on growth of six yeast species (Saccharomyces cerevisiae, Candida glabrata, C. krusei, C. dubliniensis, C. tropicalis and C. lusitaniae) in media with glucose or ethanol as the carbon source, as well as recovery of growth inhibition by the addition of tryptophan. Results: Tryptamine was found to have an inhibitory effect on respiratory growth of all yeast species when grown with ethanol as the carbon source. Tryptamine also inhibited fermentative growth of Saccharomyces cerevisiae, C. krusei and C. tropicalis with glucose as the carbon source. In most cases the inhibitory effects were reduced by added tryptophan. Conclusion: The results obtained in this study are consistent with tryptamine competing with tryptophan to bind mitochondrial and cytoplasmic tryptophanyl tRNA synthetases in yeast: effects on mitochondrial and cytoplasmic protein synthesis can be studied as a function of growth with glucose or ethanol as a carbon source. Of the yeast species tested, there is variation in the sensitivity to tryptamine and the rescue by tryptophan. The current study suggests appropriate yeast strains and approaches for further studies.


2009 ◽  
Vol 53 (12) ◽  
pp. 5213-5223 ◽  
Author(s):  
Sandra C. dos Santos ◽  
Sandra Tenreiro ◽  
Margarida Palma ◽  
Jorg Becker ◽  
Isabel Sá-Correia

ABSTRACT Quinine has been employed in the treatment of malaria for centuries and is still used against severe Plasmodium falciparum malaria. However, its interactions with the parasite remain poorly understood and subject to debate. In this study, we used the Saccharomyces cerevisiae eukaryotic model to better understand quinine's mode of action and the mechanisms underlying the cell response to the drug. We obtained a transcriptomic profile of the yeast's early response to quinine, evidencing a marked activation of genes involved in the low-glucose response (e.g., CAT8, ADR1, MAL33, MTH1, and SNF3). We used a low inhibitory quinine concentration with no detectable effect on plasma membrane function, consistent with the absence of a general nutrient starvation response and suggesting that quinine-induced glucose limitation is a specific response. We have further shown that transport of [14C]glucose is inhibited by quinine, with kinetic data indicating competitive inhibition. Also, tested mutant strains deleted for genes encoding high- and low-affinity hexose transporters (HXT1 to HXT5, HXT8, and HXT10) exhibit resistance phenotypes, correlating with reduced levels of quinine accumulation in the mutants examined. These results suggest that the hexose transporters are facilitators of quinine uptake in S. cerevisiae, possibly through a competitive inhibition mechanism. Interestingly, P. falciparum is highly dependent on glucose uptake, which is mediated by the single-copy transporter PfHT1, a protein with high homology to yeast's hexose transporters. We propose that PfHT1 is an interesting candidate quinine target possibly involved in quinine import in P. falciparum, an uptake mechanism postulated in recent studies to occur through a still-unidentified importer(s).


1973 ◽  
Vol 133 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Catherine S. Hawes ◽  
D. J. D. Nicholas

1. ATP sulphurylase from Saccharomyces cerevisiae was purified 140-fold by using heat treatment, DEAE-cellulose chromatography and Sepharose 6B gel filtration. 2. The enzyme was stable at -15°C, optimum reaction velocity was between pH7.0 and 9.0, and the activation energy was 62kJ/mol (14.7kcal/mol). 3. The substrate was shown to be the MgATP2- complex, free ATP being inhibitory. 4. Double-reciprocal plots from initial-velocity studies were intersecting and the Km of each substrate was determined at infinite concentration of the other (Km MgATP2-, 0.07mm; MoO42-, 0.17mm). 5. Radio-isotopic exchange between the substrate pairs, adenosine 5′-[35S]sulphatophosphate and SO42-, 35SO42- and adenosine 5′-sulphatophosphate, occurred only in the presence of either MgATP2- or PPi. This suggests, along with the initial-velocity data, a sequential reaction mechanism in which both substrates bind before any product is released. 6. The enzyme reaction was specific for ATP and was not inhibited by l-cysteine, l-methionine, SO32-, S2O32- (all 2mm) nor by p-chloromercuribenzoate (1mm). 7. Competitive inhibition of the enzyme with respect to MoO42- was produced by SO42- (Ki=2.0mm) and non-competitive inhibition by sulphide (Ki=3.4mm). 8. Adenosine 5′-sulphatophosphate inhibited strongly and concentrations as low as 0.02mm altered the normal hyperbolic velocity–substrate curves with both MgATP2- and MoO42- to sigmoidal forms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastian A. Tamayo Rojas ◽  
Virginia Schadeweg ◽  
Ferdinand Kirchner ◽  
Eckhard Boles ◽  
Mislav Oreb

AbstractAs abundant carbohydrates in renewable feedstocks, such as pectin-rich and lignocellulosic hydrolysates, the pentoses arabinose and xylose are regarded as important substrates for production of biofuels and chemicals by engineered microbial hosts. Their efficient transport across the cellular membrane is a prerequisite for economically viable fermentation processes. Thus, there is a need for transporter variants exhibiting a high transport rate of pentoses, especially in the presence of glucose, another major constituent of biomass-based feedstocks. Here, we describe a variant of the galactose permease Gal2 from Saccharomyces cerevisiae (Gal2N376Y/M435I), which is fully insensitive to competitive inhibition by glucose, but, at the same time, exhibits an improved transport capacity for xylose compared to the wildtype protein. Due to this unique property, it significantly reduces the fermentation time of a diploid industrial yeast strain engineered for efficient xylose consumption in mixed glucose/xylose media. When the N376Y/M435I mutations are introduced into a Gal2 variant resistant to glucose-induced degradation, the time necessary for the complete consumption of xylose is reduced by approximately 40%. Moreover, Gal2N376Y/M435I confers improved growth of engineered yeast on arabinose. Therefore, it is a valuable addition to the toolbox necessary for valorization of complex carbohydrate mixtures.


2003 ◽  
Vol 1614 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Gwenaëlle Conseil ◽  
José M. Perez-Victoria ◽  
J.Michel Renoir ◽  
André Goffeau ◽  
Attilio Di Pietro

2012 ◽  
Vol 78 (15) ◽  
pp. 5052-5059 ◽  
Author(s):  
Eline H. Huisjes ◽  
Erik de Hulster ◽  
Jan C. van Dam ◽  
Jack T. Pronk ◽  
Antonius J. A. van Maris

ABSTRACTThe efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeastSaccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation byS. cerevisiaewas investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pKavalue of galacturonic acid (3.51), the addition of 10 g · liter−1galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter−1galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermentingS. cerevisiaestrain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.


2001 ◽  
Vol 36 (2) ◽  
pp. 196-201 ◽  
Author(s):  
F. Seibold ◽  
O. Stich ◽  
R. Hufnagl ◽  
S. Kamil ◽  
M. Scheurlen

2020 ◽  
Vol 35 (5) ◽  
pp. 729-743 ◽  
Author(s):  
Christopher D. Erb ◽  
Dayna R. Touron ◽  
Stuart Marcovitch

Sign in / Sign up

Export Citation Format

Share Document