The isolation of nonsense mutations in cell division cycle genes of the yeast Saccharomyces cerevisiae

1981 ◽  
Vol 181 (4) ◽  
pp. 556-558 ◽  
Author(s):  
Rajendra Rai ◽  
Bruce L. A. Carter
2000 ◽  
Vol 351 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Gian Luigi RUSSO ◽  
Christian VAN DEN BOS ◽  
Ann SUTTON ◽  
Paola COCCETTI ◽  
Maurizio D. BARONI ◽  
...  

The CDK (cyclin-dependent kinase) family of enzymes is required for the G1-to-S-phase and G2-to-M-phase transitions during the cell-division cycle of eukaryotes. We have shown previously that the protein kinase CKII catalyses the phosphorylation of Ser-39 in Cdc2 during the G1 phase of the HeLa cell-division cycle [Russo, Vandenberg, Yu, Bae, Franza and Marshak (1992) J. Biol. Chem. 267, 20317–20325]. To identify a functional role for this phosphorylation, we have studied the homologous enzymes in the budding yeast Saccharomyces cerevisiae. The S. cerevisiae homologue of Cdc2, Cdc28, contains a consensus CKII site (Ser-46), which is homologous with that of human Cdc2. Using in vitro kinase assays, metabolic labelling, peptide mapping and phosphoamino acid analysis, we demonstrate that this site is phosphorylated in Cdc28 in vivo as well in vitro. In addition, S. cerevisiae cells in which Ser-46 has been mutated to alanine show a decrease in both cell volume and protein content of 33%, and this effect is most pronounced in the stationary phase. Because cell size in S. cerevisiae is regulated primarily at the G1 stage, we suggest that CKII contributes to the regulation of the cell cycle in budding yeast by phosphorylation of Cdc28 as a checkpoint for G1 progression.


Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 81-95 ◽  
Author(s):  
E J Louis ◽  
J E Haber

Abstract The presence of the tRNA ochre suppressors SUP11 and SUP5 is found to induce meiosis I nondisjunction in the yeast Saccharomyces cerevisiae. The induction increases with increasing dosage of the suppressor and decreases in the presence of an antisuppressor. The effect is independent of the chromosomal location of SUP11. Each of five different chromosomes monitored exhibited nondisjunction at frequencies of 0.1%-1.1% of random spores, which is a 16-160-fold increase over wild-type levels. Increased nondisjunction is reflected by a marked increase in tetrads with two and zero viable spores. In the case of chromosome III, for which a 50-cM map interval was monitored, the resulting disomes are all in the parental nonrecombinant configuration. Recombination along chromosome III appears normal both in meioses that have no nondisjunction and in meioses for which there was nondisjunction of another chromosome. We propose that a proportion of one or more proteins involved in chromosome pairing, recombination or segregation are aberrant due to translational read-through of the normal ochre stop codon. Hygromycin B, an antibiotic that can suppress nonsense mutations via translational read-through, also induces nonrecombinant meiosis I nondisjunction. Increases in mistranslation, therefore, increase the production of aneuploids during meiosis. There was no observable effect of SUP11 on mitotic chromosome nondisjunction; however some disomes caused SUP11 ade2-ochre strains to appear white or red, instead of pink.


1992 ◽  
Vol 12 (12) ◽  
pp. 5455-5463 ◽  
Author(s):  
K B Freeman ◽  
L R Karns ◽  
K A Lutz ◽  
M M Smith

The promoters of the Saccharomyces cerevisiae histone H3 and H4 genes were examined for cis-acting DNA sequence elements regulating transcription and cell division cycle control. Deletion and linker disruption mutations identified two classes of regulatory elements: multiple cell cycle activation (CCA) sites and a negative regulatory site (NRS). Duplicate 19-bp CCA sites are present in both the copy I and copy II histone H3-H4 promoters arranged as inverted repeats separated by 45 and 68 bp. The CCA sites are both necessary and sufficient to activate transcription under cell division cycle control. A single CCA site provides cell cycle control but is a weak transcriptional activator, while an inverted repeat comprising two CCA sites provides both strong transcriptional activation and cell division cycle control. The NRS was identified in the copy I histone H3-H4 promoter. Deletion or disruption of the NRS increased the level of the histone H3 promoter activity but did not alter the cell division cycle periodicity of transcription. When the CCA sites were deleted from the histone promoter, the NRS element was unable to confer cell division cycle control on the remaining basal level of transcription. When the NRS element was inserted into the promoter of a foreign reporter gene, transcription was constitutively repressed and did not acquire cell cycle regulation.


1991 ◽  
Vol 11 (10) ◽  
pp. 5301-5311
Author(s):  
J A Brown ◽  
S G Holmes ◽  
M M Smith

The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.


Genetics ◽  
1980 ◽  
Vol 96 (4) ◽  
pp. 859-876 ◽  
Author(s):  
David Schild ◽  
Breck Byers

ABSTRACT The meiotic effects of two cell-division-cycle mutations of Saccharomyces cerevisiae (cdc5 and cdc14) have been examined. These mutations were isolated by L. H. Hartwell and his colleagues and characterized as defective in mitosis, causing a temperature-sensitive arrest in late nuclear division. When subjected to the restrictive temperature in meiosis, diploid cells homozygous for either of these mutations generally proceeded through premeiotic DNA synthesis and commitment to meiotic levels of recombination, but then arrested at a stage following spindle pole body (SPB) duplication and separation. The two SPBs lacked the interconnection by spindle microtubules typical of the complete meiosis I spindle. Challenge of these homozygotes by a semi-restrictive temperature often caused the production of asci containing two diploid spores. Genetic analysis of the viable pairs of spores revealed that each spore had become homozygous for centromere-linked markers significantly more frequently than for distal markers, indicating that the two spores each contained pairs of sister centromeres that had co-segregated in the reductional division of meiosis I. Ultrastructural analysis of the cdc5 homozygote demonstrated that these cells had completed meiosis I and formed two meiosis II spindles, but that the latter remained unusually short. This resulted in the encapsulation of both poles of each spindle within a single spore wall. These mutations therefore are defective in both meiotic divisions, as well as in the mitotic division described originally.


1995 ◽  
Vol 15 (12) ◽  
pp. 6838-6844 ◽  
Author(s):  
Y Wang ◽  
D J Burke

Inhibition of mitosis by antimitotic drugs is thought to occur by destruction of microtubules, causing cells to arrest through the action of one or more mitotic checkpoints. We have patterned experiments in the yeast Saccharomyces cerevisiae after recent studies in mammalian cells that demonstrate the effectiveness of antimitotic drugs at concentrations that maintain spindle structure. We show that low concentrations of nocodazole delay cell division under the control of the previously identified mitotic checkpoint genes BUB1, BUB3, MAD1, and MAD2 and independently of BUB2. The same genes mediate the cell cycle delay induced in ctf13 mutants, limited for an essential kinetochore component. Our data suggest that a low concentration of nocodazole induces a cell cycle delay through checkpoint control that is sensitive to impaired kinetochore function. The BUB2 gene may be part of a separate checkpoint that responds to abnormal spindle structure.


2010 ◽  
Vol 21 (13) ◽  
pp. 2161-2171 ◽  
Author(s):  
Kin Chan ◽  
Jesse P. Goldmark ◽  
Mark B. Roth

The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.


Sign in / Sign up

Export Citation Format

Share Document