antimitotic drugs
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Vol 118 (48) ◽  
pp. e2103585118
Author(s):  
Patrick J. Flynn ◽  
Peter D. Koch ◽  
Timothy J. Mitchison

Mitotic errors can activate cyclic GMP–AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase. Micronuclei consistently recruited cGAS without activating it. Instead, IFN signaling correlated with formation of cGAS-coated chromatin bridges that were selectively generated by microtubule stabilizers and MPS1 inhibitors. cGAS activation by chromatin bridges was suppressed by drugs that prevented cytokinesis. We confirmed cGAS activation by chromatin bridges in cancer lines that are unable to secrete IFN by measuring paracrine transfer of 2′3′-cGAMP to fibroblasts, and in mouse cells. We propose that cGAS is selectively activated by self-chromatin when it is stretched in chromatin bridges. Immunosurveillance of cells that fail mitosis, and antitumor actions of taxanes and MPS1 inhibitors, may depend on this effect.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Sara Vaz ◽  
Fábio J. Ferreira ◽  
Joana C. Macedo ◽  
Gil Leor ◽  
Uri Ben-David ◽  
...  

AbstractInhibition of spindle microtubule (MT) dynamics has been effectively used in cancer treatment. Although the mechanisms by which MT poisons elicit mitotic arrest are fairly understood, efforts are still needed towards elucidating how cancer cells respond to antimitotic drugs owing to cytotoxicity and resistance side effects. Here, we identified the critical G2/M transcription factor Forkhead box M1 (FOXM1) as a molecular determinant of cell response to antimitotics. We found FOXM1 repression to increase death in mitosis (DiM) due to upregulation of the BCL-2 modifying factor (BMF) gene involved in anoikis, an apoptotic process induced upon cell detachment from the extracellular matrix. FOXM1 binds to a BMF intronic cis-regulatory element that interacts with both the BMF and the neighbor gene BUB1B promoter regions, to oppositely regulate their expression. This mechanism ensures that cells treated with antimitotics repress BMF and avoid DiM when FOXM1 levels are high. In addition, we show that this mechanism is partly disrupted in anoikis/antimitotics-resistant tumor cells, with resistance correlating with lower BMF expression but in a FOXM1-independent manner. These findings provide a stratification biomarker for antimitotic chemotherapy response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark Borris D. Aldonza ◽  
Roben D. Delos Reyes ◽  
Young Seo Kim ◽  
Jayoung Ku ◽  
Ana Melisa Barsallo ◽  
...  

AbstractDrug resistance remains the major culprit of therapy failure in disseminated cancers. Simultaneous resistance to multiple, chemically different drugs feeds this failure resulting in cancer relapse. Here, we investigate co-resistance signatures shared between antimitotic drugs (AMDs) and inhibitors of receptor tyrosine kinases (RTKs) to probe mechanisms of secondary resistance. We map co-resistance ranks in multiple drug pairs and identified a more widespread occurrence of co-resistance to the EGFR-tyrosine kinase inhibitor (TKI) gefitinib in hundreds of cancer cell lines resistant to at least 11 AMDs. By surveying different parameters of genomic alterations, we find that the two RTKs EGFR and AXL displayed similar alteration and expression signatures. Using acquired paclitaxel and epothilone B resistance as first-line AMD failure models, we show that a stable collateral resistance to gefitinib can be relayed by entering a dynamic, drug-tolerant persister state where AXL acts as bypass signal. Delayed AXL degradation rendered this persistence to become stably resistant. We probed this degradation process using a new EGFR-TKI candidate YD and demonstrated that AXL bypass-driven collateral resistance can be suppressed pharmacologically. The findings emphasize that AXL bypass track is employed by chemoresistant cancer cells upon EGFR inhibition to enter a persister state and evolve resistance to EGFR-TKIs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana C. Henriques ◽  
Patrícia M. A. Silva ◽  
Bruno Sarmento ◽  
Hassan Bousbaa

AbstractAntimitotic drugs arrest cells in mitosis through chronic activation of the spindle assembly checkpoint (SAC), leading to cell death. However, drug-treated cancer cells can escape death by undergoing mitotic slippage, due to premature mitotic exit. Therefore, overcoming slippage issue is a promising chemotherapeutic strategy to improve the effectiveness of antimitotics. Here, we antagonized SAC silencing by knocking down the MAD2-binding protein p31comet, to delay mitotic slippage, and tracked cancer cells treated with the antimitotic drug paclitaxel, over 3 days live-cell time-lapse analysis. We found that in the absence of p31comet, the duration of mitotic block was increased in cells challenged with nanomolar concentrations of paclitaxel, leading to an additive effects in terms of cell death which was predominantly anticipated during the first mitosis. As accumulation of an apoptotic signal was suggested to prevent mitotic slippage, when we challenged p31comet-depleted mitotic-arrested cells with the apoptosis potentiator Navitoclax (previously called ABT-263), cell fate was shifted to accelerated post-mitotic death. We conclude that inhibition of SAC silencing is critical for enhancing the lethality of antimitotic drugs as well as that of therapeutic apoptosis-inducing small molecules, with distinct mechanisms. The study highlights the potential of p31comet as a target for antimitotic therapies.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Robert Pedley ◽  
Louise E. King ◽  
Venkatesh Mallikarjun ◽  
Pengbo Wang ◽  
Joe Swift ◽  
...  

Abstract Apoptotic priming controls the commitment of cells to apoptosis by determining how close they lie to mitochondrial permeabilisation. Variations in priming are important for how both healthy and cancer cells respond to chemotherapeutic agents, but how it is dynamically coordinated by Bcl-2 proteins remains unclear. The Bcl-2 family protein Bid is phosphorylated when cells enter mitosis, increasing apoptotic priming and sensitivity to antimitotic drugs. Here, we report an unbiased proximity biotinylation (BioID) screen to identify regulators of apoptotic priming in mitosis, using Bid as bait. The screen primarily identified proteins outside of the canonical Bid interactome. Specifically, we found that voltage-dependent anion-selective channel protein 2 (VDAC2) was required for Bid phosphorylation-dependent changes in apoptotic priming during mitosis. These results highlight the importance of the wider Bcl-2 family interactome in regulating the temporal control of apoptotic priming.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 672 ◽  
Author(s):  
Roberta Affatato ◽  
Laura Carrassa ◽  
Rosaria Chilà ◽  
Monica Lupi ◽  
Valentina Restelli ◽  
...  

Mucinous epithelial ovarian cancer (mEOC) is a rare subset of epithelial ovarian cancer. When diagnosed at a late stage, its prognosis is very poor, as it is quite chemo-resistant. To find new therapeutic options for mEOC, we performed high-throughput screening using a siRNA library directed against human protein kinases in a mEOC cell line, and polo-like kinase1 (PLK1) was identified as the kinase whose downregulation interfered with cell proliferation. Both PLK1 siRNA and two specific PLK1 inhibitors (onvansertib and volasertib) were able to inhibit cell growth, induce apoptosis and block cells in the G2/M phase of the cell cycle. We evaluated, in vitro, the combinations of PLK1 inhibitors and different chemotherapeutic drugs currently used in the treatment of mEOC, and we observed a synergistic effect of PLK1 inhibitors and antimitotic drugs. When translated into an in vivo xenograft model, the combination of onvansertib and paclitaxel resulted in stronger tumor regressions and in a longer mice survival than the single treatments. These effects were associated with a higher induction of mitotic block and induction of apoptosis, similarly to what was observed in vitro. These data suggest that the combination onvansertib/paclitaxel could represent a new active therapeutic option in mEOC.


2019 ◽  
Vol 19 (8) ◽  
pp. 1048-1057 ◽  
Author(s):  
Ebrahim S. Moghadam ◽  
Maryam H. Tehrani ◽  
René Csuk ◽  
Lucie Fischer ◽  
Mohammad Ali Faramarzi ◽  
...  

Background: During last recent years number of anti-tubulin agents were introduced for treatment of diverse kind of cancer. Despite of their potential in treatment of cancer, drug resistance and adverse toxicity such as peripheral neuropathy are some of the negative criteria of anti-tubulin agents. Methods: Twenty seven quinazoline derivatives were synthesized using a multicomponent reaction. The cytotoxicity of compounds 1-27 was tested in SRB assays employing five different human tumor cell lines. Effect of two of active compounds on tubulin polymerization was also checked using a commercially available assay kit. Molecular modelling studies were also performed using autodock tools software. Results: SRB assays showed that compounds 2, 9, 16 and 26, being highly cytotoxic with IC50 values ranging between 2.1 and 14.3µM. The possible mode of action of compounds, 2, 9, 16 and 26, and the taxol binding site of the protein tubulin, an important goal for antimitotic drugs, was also studied by molecular docking, which showed reasonable interactions with tubulin active site, followed by investigation of the effects of compounds 9 and 16 on the polymerization of tubulin. The results showed the tested compounds to be highly active as inducers of tubulin polymerization. Conclusion: Altogether, with respect to obtained results, it is attractive and beneficial to further investigation on quinazoline scaffold as antimitotic agents.


Sign in / Sign up

Export Citation Format

Share Document