Ultrastructural changes in the cochlear sensory epithelium following damage to the organ of Corti

1982 ◽  
Vol 234 (2) ◽  
pp. 163-166 ◽  
Author(s):  
A. Serra ◽  
I. Mantia
Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


2019 ◽  
Vol 379 (3) ◽  
pp. 459-471 ◽  
Author(s):  
Lejo Johnson Chacko ◽  
Consolato Sergi ◽  
Theresa Eberharter ◽  
Jozsef Dudas ◽  
Helge Rask-Andersen ◽  
...  

AbstractExpression patterns of transcription factors leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), transforming growth factor-β-activated kinase-1 (TAK1), SRY (sex-determining region Y)-box 2 (SOX2), and GATA binding protein 3 (GATA3) in the developing human fetal inner ear were studied between the gestation weeks 9 and 12. Further development of cochlear apex between gestational weeks 11 and 16 (GW11 and GW16) was examined using transmission electron microscopy. LGR5 was evident in the apical poles of the sensory epithelium of the cochlear duct and the vestibular end organs at GW11. Immunostaining was limited to hair cells of the organ of Corti by GW12. TAK1 was immune positive in inner hair cells of the organ of Corti by GW12 and colocalized with p75 neurotrophic receptor expression. Expression for SOX2 was confined primarily to the supporting cells of utricle at the earliest stage examined at GW9. Intense expression for GATA3 was presented in the cochlear sensory epithelium and spiral ganglia at GW9. Expression of GATA3 was present along the midline of both the utricle and saccule in the zone corresponding to the striolar reversal zone where the hair cell phenotype switches from type I to type II. The spatiotemporal gradient of the development of the organ of Corti was also evident with the apex of the cochlea forming by GW16. It seems that highly specific staining patterns of several transcriptions factors are critical in guiding the genesis of the inner ear over development. Our findings suggest that the spatiotemporal gradient in cochlear development extends at least until gestational week 16.


Physiology ◽  
2012 ◽  
Vol 27 (2) ◽  
pp. 100-112 ◽  
Author(s):  
A. V. Bulankina ◽  
T. Moser

The organ of Corti, the sensory epithelium of the mammalian auditory system, uses afferent and efferent synapses for encoding auditory signals and top-down modulation of cochlear function. During development, the final precisely ordered sensorineural circuit is established following excessive formation of afferent and efferent synapses and subsequent refinement. Here, we review the development of innervation of the mouse organ of Corti and its regulation.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Sung-Ho Huh ◽  
Mark E Warchol ◽  
David M Ornitz

The sensory and supporting cells (SCs) of the organ of Corti are derived from a limited number of progenitors. The mechanisms that regulate the number of sensory progenitors are not known. Here, we show that Fibroblast Growth Factors (FGF) 9 and 20, which are expressed in the non-sensory (Fgf9) and sensory (Fgf20) epithelium during otic development, regulate the number of cochlear progenitors. We further demonstrate that Fgf receptor (Fgfr) 1 signaling within the developing sensory epithelium is required for the differentiation of outer hair cells and SCs, while mesenchymal FGFRs regulate the size of the sensory progenitor population and the overall cochlear length. In addition, ectopic FGFR activation in mesenchyme was sufficient to increase sensory progenitor proliferation and cochlear length. These data define a feedback mechanism, originating from epithelial FGF ligands and mediated through periotic mesenchyme that controls the number of sensory progenitors and the length of the cochlea.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Paola Perin ◽  
Simona Tritto ◽  
Laura Botta ◽  
Jacopo Maria Fontana ◽  
Giulia Gastaldi ◽  
...  

We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.


2021 ◽  
Author(s):  
Hesam Babahosseini ◽  
Inna Belyantseva ◽  
Rizwan Yousaf ◽  
Risa Tona ◽  
Shadan Hadi ◽  
...  

Hearing depends on complex mechanical properties of the inner ear sensory epithelium. Yet, the individual contributions of different cell types to the stiffness spectrum of the sensory epithelium have not been thoroughly investigated. Using sub-100 nanometer spatial resolution PeakForce Tapping Atomic Force Microscopy (PFT-AFM), we mapped the Youngs modulus (stiffness) of the apical surface of different cells of freshly-dissected cochlear epithelium from wild-type mice and mice lacking the F-actin bundling protein TRIOBP-5 or TRIOBP-4 and TRIOBP-5. Variants of the genes encoding human and mouse TRIOBP are associated with deafness. We show that TRIOBP deficiency affects formation of supporting cell apical phalangeal microfilaments and bundled cortical F-actin of hair cell cuticular plates, softening the apical surface of the sensory epithelium. Unexpectedly, high-resolution PFT-AFM-mapping also revealed previously unrecognized reticular lamina radial stiffness gradients of opposite orientations in wild-type supporting and hair cells. Deafness-associated TRIOBP deficiencies significantly modified these bidirectional radial stiffness gradients.


Development ◽  
1993 ◽  
Vol 119 (4) ◽  
pp. 1041-1053 ◽  
Author(s):  
M.W. Kelley ◽  
X.M. Xu ◽  
M.A. Wagner ◽  
M.E. Warchol ◽  
J.T. Corwin

The mammalian organ of Corti has one of the most highly ordered patterns of cells in any vertebrate sensory epithelium. A single row of inner hair cells and three or four rows of outer hair cells extend along its length. The factors that regulate the formation of this strict pattern are unknown. In order to determine whether retinoic acid plays a role during the development of the organ of Corti, exogenous retinoic acid was added to embryonic mouse cochleae in vitro. Exogenous retinoic acid significantly increased the number of cells that developed as hair cells and resulted in large regions of supernumerary hair cells and supporting cells containing two rows of inner hair cells and up to 11 rows of outer hair cells. The effects of retinoic acid were dependent on concentration and on the timing of its addition. Western blot analysis indicated that cellular retinoic acid binding protein (CRABP) was present in the sensory epithelium of the embryonic cochlea. The amount of CRABP apparently increased between embryonic day 14 and postnatal day 1, but CRABP was not detectable in sensory epithelia from adults. A retinoic acid reporter cell line was used to demonstrate that retinoic acid was also present in the developing organ of Corti between embryonic day 14 and postnatal day 1, and was also present in adult cochleae at least in the vicinity of the modiolus. These results suggest that retinoic acid is involved in the normal development of the organ of Corti and that the effect of retinoic acid may be to induce a population of prosensory cells to become competent to differentiate as hair cells and supporting cells.


Sign in / Sign up

Export Citation Format

Share Document