Mechanical strength and thermal stability of catalyst coatings for treatment of waste gases

1988 ◽  
Vol 24 (1) ◽  
pp. 43-46
Author(s):  
R. Kh. Mukhutdinov ◽  
N. A. Samoilov ◽  
V. K. Sinel'nikova
2001 ◽  
Vol 8 (3-4) ◽  
pp. 189-206 ◽  
Author(s):  
Pirkko A. Järvelä ◽  
Jouni Enqvist ◽  
Pentti K. Järvelä ◽  
Outi Tervala

2017 ◽  
Vol 37 (6) ◽  
pp. 2158-2170 ◽  
Author(s):  
Clizia Aversa ◽  
Massimiliano Barletta ◽  
Annamaria Gisario ◽  
Elisa Pizzi ◽  
Michela Puopolo ◽  
...  

2012 ◽  
Vol 506 ◽  
pp. 74-77 ◽  
Author(s):  
Naruporn Monmaturapoj ◽  
Witoon Thepsuwan

Biphasic calcium phosphate (BCP) ceramic is commonly used in the biomedical applications particularly as a bone substitute due to its biocompatibility and directly bond to bones. However, the mechanical strength is quite poor. Therefore, well known biocompatible and strong ceramics such as SiO2, ZrO2 and TiO2 were added to improve the strength of BCP. BCP powder with HA/TCP ratios of 70/30 (HAP7030) was obtained by controlling the calcining temperature of the mixture between a pure HA and TCP. SiO2, ZrO2 and TiO2 powder with 2, 5 and 10 %wt were mixed with the HAP7030 powder by ball milling in ethanol. The mixtures were dried, pressed and sintered at 1100°C for 2 hrs. XRD and SEM were used to determine crystal structures and morphology of the sintered samples, respectively. Physical properties and flexural strength of samples were measured. Results showed that the bending strength of HAP7030 sample was rather improved by adding TiO2 than the addition of SiO2 or ZrO2. With increasing TiO2, HAP7030 strength was superior and HAP7030 with 10 %wt of TiO2 obtained the optimum bending strength around 61 MPa. However, the addition of TiO2 induced the thermal stability of HA/TCP, in which HA completely decomposed to β-TCP in this study.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


1991 ◽  
Vol 1 (12) ◽  
pp. 1823-1836 ◽  
Author(s):  
M. Bessière ◽  
A. Quivy ◽  
S. Lefebvre ◽  
J. Devaud-Rzepski ◽  
Y. Calvayrac

1994 ◽  
Vol 4 (4) ◽  
pp. 653-657
Author(s):  
B. Bonzi ◽  
M. El Khomssi ◽  
H. Lanchon-Ducauquis

Sign in / Sign up

Export Citation Format

Share Document