An X-ray structural study of organic ligands of the complexone type. V. The first example in complexones of an intramolecular hydrogen bond N?H...N in trans-cyclohexane-1,2-diamine-N,N,N?,N?-tetra-acetic acid monohydrate

1983 ◽  
Vol 24 (3) ◽  
pp. 407-413
Author(s):  
L. M. Shkol'nikova ◽  
G. V. Polyanchuk ◽  
N. M. Dyatlova ◽  
M. A. Porai-Koshits ◽  
V. G. Yashunskii
1983 ◽  
Vol 24 (3) ◽  
pp. 400-407
Author(s):  
A. E. Obodovskaya ◽  
L. M. Shkol'nikova ◽  
L. O. Atovmyan ◽  
I. A. Seliverstova ◽  
V. G. Yashunskii ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 643 ◽  
Author(s):  
Chi-Tung Yeung ◽  
Wesley Chan ◽  
Wai-Sum Lo ◽  
Ga-Lai Law ◽  
Wing-Tak Wong

The synthesis of a new CF3-containing stereogenic atropisomeric pair of ortho-disubstituted biphenyl scaffold is presented. The atropisomers are surprisingly conformationally stable for isolation. X-ray structures show that their stability comes from an intramolecular hydrogen bond formation from their two hydroxyl groups and renders the spatial arrangement of their peripheral CF3 and CH3 groups very different. The synthesized stereogenic scaffold proved to be effective in catalyzing the asymmetric N-nitroso aldol reaction of enamine and nitrosobenzene. Compared to similar scaffolds without CF3 groups, one of our atropisomer exhibits an increase in enantioselectivity in this reaction.


1985 ◽  
Vol 63 (10) ◽  
pp. 2589-2596 ◽  
Author(s):  
J. W. ApSimon ◽  
L. W. Herman ◽  
C. Huber

The synthesis of 2,2-dimethyl-5-hydroxychromene (1d) is described. The synthesis of the analogous 5,7-dihydroxy derivatives, using similar conditions, yields the adduct 9 derived via a Bucherer type reaction. X-ray analysis of 9 demonstrated that a pyrrolidine group was in the 7-position, and that the 5-hydroxyl group was involved in a strong intramolecular hydrogen bond to the 4-keto oxygen atom.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2290 ◽  
Author(s):  
Saima H. Mari ◽  
Panayiotis C. Varras ◽  
Atia-tul-Wahab ◽  
Iqbal M. Choudhary ◽  
Michael G. Siskos ◽  
...  

Detailed solvent and temperature effects on the experimental 1H-NMR chemical shifts of the natural products chrysophanol (1), emodin (2), and physcion (3) are reported for the investigation of hydrogen bonding, solvation and conformation effects in solution. Very small chemical shift of │Δδ│ < 0.3 ppm and temperature coefficients │Δδ/ΔΤ│ ≤ 2.1 ppb/K were observed in DMSO-d6, acetone-d6 and CDCl3 for the C(1)–OH and C(8)–OH groups which demonstrate that they are involved in a strong intramolecular hydrogen bond. On the contrary, large chemical shift differences of 5.23 ppm at 298 K and Δδ/ΔΤ values in the range of −5.3 to −19.1 ppb/K between DMSO-d6 and CDCl3 were observed for the C(3)–OH group which demonstrate that the solvation state of the hydroxyl proton is a key factor in determining the value of the chemical shift. DFT calculated 1H-NMR chemical shifts, using various functionals and basis sets, the conductor-like polarizable continuum model, and discrete solute-solvent hydrogen bond interactions, were found to be in very good agreement with the experimental 1H-NMR chemical shifts even with computationally less demanding level of theory. The 1H-NMR chemical shifts of the OH groups which participate in intramolecular hydrogen bond are dependent on the conformational state of substituents and, thus, can be used as molecular sensors in conformational analysis. When the X-ray structures of chrysophanol (1), emodin (2), and physcion (3) were used as input geometries, the DFT-calculated 1H-NMR chemical shifts were shown to strongly deviate from the experimental chemical shifts and no functional dependence could be obtained. Comparison of the most important intramolecular data of the DFT calculated and the X-ray structures demonstrate significant differences for distances involving hydrogen atoms, most notably the intramolecular hydrogen bond O–H and C–H bond lengths which deviate by 0.152 tο 0.132 Å and 0.133 to 0.100 Å, respectively, in the two structural methods. Further differences were observed in the conformation of –OH, –CH3, and –OCH3 substituents.


Molbank ◽  
10.3390/m1015 ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. M1015
Author(s):  
Jaqueline Heimgert ◽  
Dennis Neumann ◽  
Guido Reiss

(3-Ammonio-2,2-dimethylpropyl)carbamate dihydrate was synthesised. The title compound was characterised by single crystal X-ray diffraction and IR-/Raman-spectroscopy. It has been demonstrated that a mixture of dilute acetic acid and 2,2-dimethyl-1,3-diaminopropane is able to capture CO2 spontaneously from the atmosphere. An intramolecular hydrogen bond stabilises the conformation of the ylide-type title molecule. Intermolecular hydrogen bonds between all moieties connect them to a strand-type chain structure.


Author(s):  
Kate J. Akerman ◽  
Orde Q. Munro

The Schiff base enaminones (3Z)-4-(5-ethylsulfonyl-2-hydroxyanilino)pent-3-en-2-one, C13H17NO4S, (I), and (3Z)-4-(5-tert-butyl-2-hydroxyanilino)pent-3-en-2-one, C15H21NO2, (II), were studied by X-ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one-dimensional hydrogen-bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one-dimensional hydrogen-bonded chain. The DFT-calculated structures [in vacuo, B3LYP/6-311G(d,p) level] for the keto tautomers compare favourably with the X-ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1lower in energy than the enol tautomers for (I) and (II), respectively.


Sign in / Sign up

Export Citation Format

Share Document