Effect of heat treatment on the structure and properties of sheet steel 45 for the finish cutting of components

1982 ◽  
Vol 24 (9) ◽  
pp. 613-618 ◽  
Author(s):  
N. F. Legeida ◽  
L. V. Kovalenko ◽  
V. M. Krasnopol'skii ◽  
T. A. Podpovetnaya
2015 ◽  
Vol 788 ◽  
pp. 187-193 ◽  
Author(s):  
Aleksandr Prudnikov ◽  
Marina Popova ◽  
Vladimir Prudnikov

The results of the influence of preliminary thermal cyclic deformation and subsequent hardening heat treatment on the microstructure and mechanical properties of hot-rolled sheet steel 10 are presented. It is shown that the use of preliminary thermal cyclic deformation of the steel 10 stock material results in a fine-grained structure of a hot-rolled sheet (3 mm thick) produced by an industrial technology. Deformation occurred at a temperature above AC3 (1250 °C), with cooling to 200-300 °C during 10 cycles and the deformation ratio per cycle being 6-8 %. Such a treatment before sheet hot-rolling allows increasing the strength characteristics (tensile strength, yield strength) by almost 30 %. It has been established that the use of subsequent heat treatment (quenching, 900 °C, water and tempering 1 h, 600 °C) leads to a further increase in strength characteristics by 15-20% while maintaining a sufficient level of ductility of sheet steel.


1973 ◽  
Vol 4 (2) ◽  
pp. 179-181 ◽  
Author(s):  
L. P. Sebina ◽  
V. A. Usenko ◽  
B. A. Nefedov ◽  
V. K. Smirnov

Carbon ◽  
2007 ◽  
Vol 45 (6) ◽  
pp. 1200-1211 ◽  
Author(s):  
Changjun Zhou ◽  
William S. Kinman ◽  
Paul J. McGinn

2021 ◽  
Vol 5 ◽  
pp. 18-27
Author(s):  
A. A. Selivanov ◽  
◽  
K. V. Antipov ◽  
Yu. S. Oglodkova ◽  
A. S. Rudchenko ◽  
...  

The results of the development of a new alloy of the Al – Mg – Si system of the 6xxx series, which received the V-1381 grade, are presented. The influence of the composition and modes of heat treatment on the mechanical and corrosion properties of sheets with a thickness of 1,0 and 3,0 mm, manufactured under the conditions of FSUE “VIAM”, was investigated. Average level of sheet properties: UTS = 410 MPa, YTS = 360 MPa, El = 11.5 %; fatigue crack growth (dl/dN) = 0,59 mm/kcycle at ΔK = 18,6 MPa·m1/2, intergranular corrosion ≤ 0,15 mm, exfoliation corrosion 4 points. It was found that the structure of the sheets is recrystallized, the main strengthening phase is the coherent matrix β’(Mg2Si)-phase evenly distributed in the volume of grains with a high density. There is also a heterogeneous origin of β′-phase on dislocations and dispersoids. At grain boundaries there are zones free from emissions with a width of 15 – 20 nm. Dispersoids of various morphologies are observed in the tested samples. Temperature and heat values of phase transformations in ingots and sheets are determined and established liquidus and solidus points. The sheet weldability was evaluated by automatic argon-arc welding and the critical rate of deformation of the weld metal during crystallization was determined, at which no cracks were formed in it. Laser welding mode has been developed to ensure optimal formation of geometric parameters of the weld.


2021 ◽  
pp. 71-75
Author(s):  

The influence of thermal and aerothermoacoustic treatments on the structure and mechanical properties of БрНХК bronze is considered. An increase in the strength and elasticity of the alloy is established by optimizing the thermal and aerothermoacoustic modes. The influence of the pre-aging treatment, the aging and aerothermoacoustic modes on the structure, the possibility of an additional increase in the mechanical properties of wire from БрНХК after aerothermoacoustic treatment are shown. Keywords: bronze, heat treatment, aerothermoacoustic treatment, microstructure, mechanical properties. [email protected]


1953 ◽  
Vol 26 (4) ◽  
pp. 821-831 ◽  
Author(s):  
B. A. Dogadkin ◽  
K. Pechkovskaya ◽  
Ts Mil'man

Abstract 1. Raising the temperature of vulcanizates containing carbon black causes changes in the carbon structures, which can be estimated by the value of specific electric resistivity ρ and the index n in the equation: I=cVn, relating the strength of the current I with the voltage V. 2. These changes are nearly independent of the type of rubber and are governed chiefly by the type of carbon black. 3. The change of electric resistivity of vulcanizates with temperature follows an exponential law, and can be expressed by the equation : ρt=ρ0 eαt. 4. The sign of the coefficient α is negative for vulcanizates containing channel carbon black, and positive for those containing nozzle black or lamp black. 5. Heating of vulcanizates (up to 100°) for 30 minutes causes destruction of the nozzle black and lamp black particles, but causes little apparent destruction of channel black structures. 6. Prolonged heating (10 hours or more) at temperatures above 60° C causes destruction of the particles of all the carbon blacks studied. This detruction is more extensive in the case of nozzle and lamp blacks than in the case of channel black. 7. During heat treatment of mixtures containing channel black, it is chiefly the carbon-rubber bonds that are destroyed (the index n decreases); whereas in mixtures containing nozzle, furnace and lamp blacks, it is chiefly the carbon-carbon bonds that are destroyed (the index n increases). 8. The higher the temperature during deformation and relaxation, the greater is the degree of restoration of the carbon structures which are destroyed during deformation. 9. The degree of restoration of the carbon structures under identical conditions of deformation and relaxation of vulcanizates containing nozzle black is greater than that of corresponding vulcanizates containing channel black.


2018 ◽  
Vol 59 (9-10) ◽  
pp. 609-614 ◽  
Author(s):  
S. E. Krylova ◽  
O. A. Kletsova ◽  
V. I. Gryzunov ◽  
A. P. Fot ◽  
I. Sh. Tavtilov

Sign in / Sign up

Export Citation Format

Share Document