Effect of B lymphocytes from different organs on hematopoietic colony formation in the spleen by bone marrow cells

1992 ◽  
Vol 113 (2) ◽  
pp. 221-224
Author(s):  
V. M. Man'ko ◽  
O. A. Guseva ◽  
I. V. Miroshnichenko ◽  
A. A. Yarilin
1985 ◽  
Vol 60 (1) ◽  
pp. 129-136 ◽  
Author(s):  
M. Y. Gordon ◽  
J. A. Hibbin ◽  
L. U. Kearney ◽  
E. C. Gordon-Smith ◽  
J. M. Goldman

Blood ◽  
1984 ◽  
Vol 63 (4) ◽  
pp. 784-788 ◽  
Author(s):  
VF LaRussa ◽  
F Sieber ◽  
LL Sensenbrenner ◽  
SJ Sharkis

Abstract In this article, we present evidence that sialic acid-containing surface components play a role in the regulation of erythropoiesis. A 1- hr exposure of mouse bone marrow cells to high concentrations of neuraminidase reduced erythroid colony formation. Coculture of 10(6) untreated thymocytes with neuraminidase-treated bone marrow cells restored erythroid colony growth. Neuraminidase-treated thymocytes retained their ability to suppress erythroid colony formation by untreated marrow cells, but lost their ability to enhance erythroid colony formation. Continuous exposure to low concentrations of neuraminidase enhanced erythroid bone marrow cell colony growth in response to a suboptimal dose of erythropoietin.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 64-64 ◽  
Author(s):  
Bert A. Van der Reijden ◽  
Jurgen A.F. Marteijn ◽  
Liesbeth Van Emst ◽  
Theo De Witte ◽  
Joop H. Jansen

Abstract We identified Triad1 as a gene that is upregulated by retinoic acid during the granulocytic differentiation of acute promyelocytic leukemia cells. In normal hematopoiesis, we show that Triad1 is weakly expressed in immature CD34+ bone marrow cells, and highly expressed in mature monocytes and granulocytes. Together, this suggests that Triad1 plays a role in the differentiation of hematopoietic cells. Triad1 contains a tripartite domain including two RING fingers, indicating that this protein might function as a ubiquitin E3 ligase, catalyzing the the conjugation of ubiquitin to substrate proteins thereby marking them for targeted degradation by the 26S proteasome. Using GST pull down experiments, we show that Triad1 binds to the ubiquitin conjugating (E2) enzymes UbcH6 and 7. In addition, immunoprecipitation of Triad1 in cells that were transfected with FLAG-tagged ubiquitin shows that Triad1 binds to ubiquitinated proteins, and that Triad1 is capable of self-ubiquitination, further corroborating the assumption that Triad1 acts as a E3 ubiquitin ligating enzyme. To study the role of Triad1 in hematopoiesis we overexpressed the gene in primary murine bone marrow cells using a retroviral vector that contains Triad1 in front of an IRES-GFP cassette. GFP positive cells were FACS sorted and used in colony assays (CFU-GM). Compared to empty vector controls (GFP alone), Triad1 expression resulted in more than 80% inhibition of clonogenic growth. Importantly, addition of the proteasome inhibitor MG132 (10E-8 M) reversed the Triad1-induced suppression of colony formation. Furthermore, three Triad1 expression constructs in which one of the conserved cys/his residues of the TRIAD domain (essential for function) were mutated did not show the suppressive effect on colony formation. Together, these data show that Triad1 is involved in myelopoiesis and acts through the ubiquitination of specific substrate proteins. To identify these substrates, a yeast-two-hybrid screen of a human bone marrow cDNA library was performed using the Triad1 protein as a bait. Interestingly, the transcriptional repressor Gfi1b was found to bind to Triad1. The interaction was confirmed by immunoprecipitation using GFP-Triad1 and FLAG-tagged Gfi1b transfections in mammalian cells. We show that Triad1 binds to the zinc finger region of Gfi1b. This region is very (>98%) homologous to the paralogue Gfi1. Further immunoprecipitation analyses showed that Triad1 also binds to the zinc finger region of Gfi1. Gfi1 plays an essential role in neutrophil development and Gfi1 pointmutations result in neutropenia in man. Currently, we are studying the direct ubiquitination of Gfi and Gfi1b by Triad1 in in vitro ubiquitination assays. In addition, we are studying the effect of Triad1 on the transcriptional repression of the ELA2 and other promoters by Gfi1.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 775-775
Author(s):  
Joshua J Oaks ◽  
A. Mukhopadhyay ◽  
Ramasamy Santhanam ◽  
S. A Saddoughi ◽  
Christopher Walker ◽  
...  

Abstract Abstract 775 We have shown (Oaks JJ et al. ASH 2009) that the tumor suppressor Protein Phosphatase 2A (PP2A) is functionally inactivated by Jak2V617F in cell line models of Jak2V617F myeloproliferative disorders (MPD) and Jak2V617F-transduced primary mouse bone marrow cells. Inhibition of Jak2 (600 nM Jak Inhibitor I; 50 μM AG490; 10h) or treatment with the PP2A activator FTY720 (2.5μM, 24 hours) restored PP2A activity that caused loss of Jak2V617F protein/activity, impaired Jak2V617F-driven colony formation, and induced apoptosis of Jak2V617F+ but not normal myeloid cells. Notably, FTY720 is a sphingosine analog suggested by the FDA to treat patients with Multiple Sclerosis due to its immunosuppressive activity when phosphorylated by sphingosine kinase 2 (SPHK2). Here we show that FTY720 treatment of CD34+ primary bone marrow cells from JakV617F+ PV patients (n=3) also rescued PP2A activity, induced Jak2 downregulation and significantly impaired cytokine-dependent clonogenic potential. Thus, FTY720 could be used as an alternative to Jak2 inhibitors, as in vitro and in animal assays showed that FTY720 (2.5μM) is not toxic against normal human myeloid progenitors while decreasing survival of CD34+ progenitors from MPD patients. To find out whether FTY720 uses the same mechanism to exert its immunosuppressive and anti-leukemic activities, we determined if the conversion of FTY720 into its phosphorylated form is important for rescuing PP2A activity in Jak2V617F-expressing cells. Impaired FTY720-P conversion by exposure to the SPHK inhibitor dimethylsphingosine (2.5μM, 6 hours) did not affect the ability of FTY720 to activate PP2A. Also, a synthetically phosphorylated FTY720 (FTY720-P, 2.5μM, 6 hours) was unable to activate PP2A or exert any anti-leukemic activity, suggesting that the anti-proliferative and pro-apoptotic effects of FTY720 are independent of its phosphorylation and interaction with the S1PR1 receptor. We found that activation of S1PR1 through the specific agonist SEW2871 (10μM), FTY720-P (2.5μM), or sphingosine-1-phosphate (100nM) markedly suppresses (~60% inhibition) rather than activates PP2A in normal myeloid progenitors. As expected, knockdown of S1PR1 had no effect on FTY720-mediated PP2A activation in Jak2V617F-transformed cells. Mechanistically we found that Jak2V617F and PP2Ac were found in a ternary complex with the PP2A inhibitor SET. SET knockdown by shRNA restored PP2A activity in Jak2V617F+ Ba/F3 cells to levels similar to those found in non-transformed cells, and led to an 84% decrease in Jak2V617F+-driven colony formation. In addition, co-immunoprecipitation assays revealed that FTY720 (10μM) disrupts Jak2-PP2A, PP2A-SET and Jak2-SET interactions, suggesting that SET may be the target of FTY720. Consistently, affinity chromatography showed that FTY720 efficiently interferes with the ability of C6-ceramide (10μM) to bind SET as the amount of SET eluted from the biotin-labeled C6-ceramide was significantly reduced by exposure of the cell lysate to FTY720. As well, lentiviral-mediated expression of wild type or K209D SET mutant (ceramide binding deficient) in Ba/F3 cells impaired PP2A activity (≥80% decrease), which could be totally rescued by FTY720 only in cells transduced with wild type but not K209D SET. The formal demonstration that FTY720 activates PP2A by displacing SET came when we found SET in anti-NBD immunoprecipitates from Jak2V617F-expressing Ba/F3 cells treated with FTY720-phenoxy-NBD (10μM; 30 min). Together, our data show that FTY720 has the potential to be an effective therapeutic agent for MPD patients by virtue of its low toxicity and ability to activate PP2A by displacing SET; however, FTY720 still retains the ability to become phosphorylated and inhibit, at least in part, PP2A. Thus, we developed non-phosphorylatable FTY720 derivatives and assessed them for their ability to: activate PP2A; induce downregulation/inactivation of targeted kinases (e.g. Jak2, BCR-ABL1, Akt); act as anti-proliferative and pro-apoptotic agent to leukemic but not normal myeloid/lymphoid progenitors; do not interact with S1PR1; and show no in vivo effects on B220+/CD19+ and CD4 or CD8 cellular compartments. These FTY720 derivatives were found to be not immunosuppressive but able to mirror FTY720 in terms of inducing Jak2V617F downregulation and cell killing while retaining the parent compound's minimal toxicity towards untransformed cells. Disclosures: Verstovsek: Incyte Corporation: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2460-2460
Author(s):  
Evert-Jan F. M. de Kruijf ◽  
Ingmar van Hengel ◽  
Jorge M Perez-Galarza ◽  
Willem E. Fibbe ◽  
Melissa van Pel

Abstract Hematopoietic stem- and progenitor cell (HSPC) mobilization is a property of most hematopoietic growth factors, such as Granulocyte Colony Stimulating Factor (G-CSF). Not all donors mobilize equally well and therefore the number of HSPC that are obtained following mobilization may be limited. Mesenchymal stromal cells (MSC) have the capacity to differentiate into cells of the mesodermal lineage and have immunomodulatory properties in vivo and in vitro. Here, we have investigated the effect of MSC co-administration on G-CSF-induced HSPC mobilization. MSC were obtained from bone marrow cells (bone marrow-derived) or bone fragments (bone-derived) and were expanded in alpha-MEM containing 10% fetal calf serum until sufficient cell numbers were obtained. Bone marrow or bone-derived MSC were administered intravenously for three days at a dose of 200 x103 cells per day to male C57BL/6 recipients that were simultaneously mobilized with G-CSF (10 μg per day intraperitoneally for 3 days) or PBS as a control. Co-injection of G-CSF and MSC lead to a 2-fold increase in HSPC mobilization compared to G-CSF alone (8,563 ± 3,309 vs. 4,268 ± 1,314 CFU-C per ml peripheral blood respectively; n=13, p<0.01). Administration of MSC alone did not induce HSPC mobilization (273 ± 229 CFU-C/ml blood; n=13). Furthermore, co-injection of splenocytes and G-CSF did not enhance HSPC mobilization, showing that the administration of exogeneous cells as such is not sufficient for enhancement of HSPC mobilization. It has been reported that G-CSF-induced HSPC mobilization is associated with a decrease in the number of osteal macrophages, B lymphocytes and erythroid progenitors. Administration of MSC alone induced a significant decrease in the frequency of osteal macrophages (7.9 ± 1.2 vs 6.2 ± 1.4% bone marrow cells for PBS vs. MSC respectively; n=8, p<0.05), but did not affect osteoblast numbers. Furthermore, the frequency of B lymphocytes was significantly decreased following MSC administration (29.9 ± 4.0 vs. 16.5 ± 4.9% bone marrow cells for PBS vs. MSC respectively; n=13, p<0.0001). No differences were observed in erythroid numbers following MSC administration. To investigate the mechanisms underlying these observations, the migratory capacity of luciferase transduced MSC was studied through bioluminescence imaging. Following intravenous injection, MSC were detected in the lungs, but not in other organs. In addition, no difference in MSC migration was observed between G-CSF and PBS treated mice. Moreover, intraperitoneal administration of G-CSF and MSC resulted in increased HSPC mobilization compared to G-CSF alone (10,178 ±3,039 vs. 5,158 ± 2,436 CFU-C per ml peripheral blood; n=5-12). Together, these data point to an endocrine effect of MSC on G-CSF-induced HSPC mobilization. No differences in IL-6, CXCL-12 or M-CSF levels in bone marrow extracellular fluid were observed. In conclusion, G-CSF-induced HSPC mobilization is enhanced by injection of MSC. We hypothesize that the MSC-induced partial depletion of B lymphocytes and osteal macrophages in the bone marrow are crucial factors involved in the enhancement of G-CSF-induced HSPC mobilization. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1997-2004 ◽  
Author(s):  
A Srivastava ◽  
E Bruno ◽  
R Briddell ◽  
R Cooper ◽  
C Srivastava ◽  
...  

Abstract Parvovirus B19 infection leads to transient aplastic crises in individuals with chronic hemolytic anemias or immunodeficiency states. An additional unexplained sequela of B19 infection is thrombocytopenia. Because B19 is known to have a remarkable tropism for human erythropoietic elements, and is not known to replicate in nonerythroid cells, the etiology of this thrombocytopenia is uncertain. We sought to define the pathobiology of B19-associated thrombocytopenia by examining the role of B19 on in vitro megakaryocytopoiesis. B19 infection of normal human bone marrow cells significantly suppressed megakaryocyte (MK) colony formation compared with mock-infected cells. No such inhibition was observed with a nonpathogenic human parvovirus, the adeno-associated virus 2 (AAV). The B19-MK cell interaction was also studied at the molecular level. Whereas low-density bone marrow cells containing erythroid precursor cells supported B19 DNA replication, no viral DNA replication was observed in B19-infected MK-enriched fractions as determined by the presence of viral DNA replicative intermediates on Southern blots. However, analysis of total cytoplasmic RNA isolated from B19-infected MK fractions showed a low-level expression of the B19 genome as detected by quantitative RNA dot blots as well as by Northern analysis. Furthermore, a frame-shift mutation in a recombinant AAV-B19 hybrid genome segment that encodes the viral nonstructural (NS1) protein significantly reduced the observed inhibition of MK colony formation. These studies indicate tissue- tropism of B19 beyond the erythroid progenitor cell, and lend support to the hypothesis that B19 genome expression may be toxic to cell populations that are nonpermissive for viral DNA replication.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 1936-1941 ◽  
Author(s):  
T Suda ◽  
S Okada ◽  
J Suda ◽  
Y Miura ◽  
M Ito ◽  
...  

Abstract Using a clonal culture system, we investigated the lymphohematopoietic effects of recombinant interleukin-7 (IL-7) obtained from conditioned media of transfected COS 1 cells. IL-7 alone acted on murine bone marrow cells and supported the formation of B-cell colonies. These colony cells were positive for B220, and some of them were also found to have either IgM or Thy-1. B220+, IgM- cells, but not B220- cells sorted from fresh bone marrow cells were able to form B cell colonies in the presence of IL-7. Thus, IL-7 supported the differentiation of B220+, IgM- cells to B220+, IgM+ cells. B220+, IgM+ cells did not proliferate in the presence of IL-7. IL-7 did not affect the myeloid colony formation supported by IL-3, IL-5, IL-6, granulocyte macrophage colony stimulating factor (GM-CSF), and G-CSF. On the other hand, lymphocyte colony formation was not affected by IL-2, IL-3, IL-4, IL-5, IL-6, GM-CSF, or G-CSF. Interestingly, IL-1 alpha inhibited IL-7- induced B cell colony formation in a dose-dependent manner, while the same concentration of IL-1 alpha enhanced the myeloid colony formation by IL-3. This reciprocal effect of IL-1 alpha may act on hematopoietic progenitor cells without accessory cells. These data show that IL-7 is a B cell growth factor and that IL-1 alpha may play an important role in differentiation of myeloid and lymphoid lineages.


1972 ◽  
Vol 135 (2) ◽  
pp. 185-199 ◽  
Author(s):  
Jonathan C. Howard

These experiments describe the preparation of pure marrow-derived lymphocyte suspensions from the thoracic duct of thymectomized, irradiated rats reconstituted with bone marrow cells. The majority of marrow-derived cells were small lymphocytes morphologically indistinguishable from small lymphocytes in thoracic duct lymph of normal donors. Marrow-derived small lymphocytes (B lymphocytes) were a predominantly long-lived population; the frequency of short-lived B lymphocytes in the thoracic duct was not significantly higher than the frequency of short-lived small lymphocytes in normal lymph. B lymphocytes transferred to normal recipients recirculated from blood to lymph. The first appearance of intravenously injected B lymphocytes in the thoracic duct was delayed relative to lymphocytes from normal donors and there was no clear cut modal recirculation time. Nevertheless their recirculation over a 48 hr period after transfusion was of the same order of magnitude as that of lymphocytes from normal donors.


Sign in / Sign up

Export Citation Format

Share Document