Heat transfer in the flow of a single-phase and boiling coolant in a channel with a porous insert

1991 ◽  
Vol 60 (2) ◽  
pp. 202-207 ◽  
Author(s):  
Yu. F. Gortyshov ◽  
I. N. Nadyrov ◽  
S. R. Ashikhmin ◽  
A. P. Kunevich

2011 ◽  
Vol 14 (3) ◽  
pp. 187-203 ◽  
Author(s):  
D. Bhargavi ◽  
V. V. Satyamurty


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Muhammad Amer Qureshi

In this paper, heat transfer and entropy of steady Williamson nanofluid flow based on the fundamental symmetry is studied. The fluid is positioned over a stretched flat surface moving non-uniformly. Nanofluid is analyzed for its flow and thermal transport properties by consigning it to a convectively heated slippery surface. Thermal conductivity is assumed to be varied with temperature impacted by thermal radiation along with axisymmetric magnetohydrodynamics (MHD). Boundary layer approximations lead to partial differential equations, which are transformed into ordinary differential equations in light of a single phase model accounting for Cu-water and TiO2-water nanofluids. The resulting ODEs are solved via a finite difference based Keller box scheme. Various formidable physical parameters affecting fluid movement, difference in temperature, system entropy, skin friction and Nusselt number around the boundary are presented graphically and numerically discussed. It has also been observed that the nanofluid based on Cu-water is identified as a superior thermal conductor rather than TiO2-water based nanofluid.



2007 ◽  
Vol 27 (10) ◽  
pp. 1715-1721 ◽  
Author(s):  
N. Caney ◽  
P. Marty ◽  
J. Bigot


Author(s):  
Oisn F. P. Lyons ◽  
Darina B. Murray ◽  
Gerard Byrne ◽  
Tim Persoons

Much is already known about the heat transfer characteristics of impinging air jets, and they are widely used in many engineering applications. There currently exist many correlations describing such characteristics. However, the complex internal structure of many nozzles can lead these to produce results which deviate from those predicted by correlations. One such nozzle is currently used in this research group to produce a water mist flow and this paper describes the experimental characteristics of its single phase behaviour.



Author(s):  
Chun K. Kwok ◽  
Matthew M. Asada ◽  
Jonathan R. Mita ◽  
Weilin Qu

This paper presents an experimental study of single-phase heat transfer characteristics of binary methanol-water mixtures in a micro-channel heat sink containing an array of 22 microchannels with 240μm × 630μm cross-section. Pure water, pure methanol, and five methanol-water mixtures with methanol molar fraction of 16%, 36%, 50%, 63% and 82% were tested. Key parametric trends were identified and discussed. The experimental study was complemented by a three-dimensional numerical simulation. Numerical predictions and experimental data are in good agreement with a mean absolute error (MAE) of 0.87%.



Sign in / Sign up

Export Citation Format

Share Document