scholarly journals Numerical Simulation of Heat Transfer Flow Subject to MHD of Williamson Nanofluid with Thermal Radiation

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Muhammad Amer Qureshi

In this paper, heat transfer and entropy of steady Williamson nanofluid flow based on the fundamental symmetry is studied. The fluid is positioned over a stretched flat surface moving non-uniformly. Nanofluid is analyzed for its flow and thermal transport properties by consigning it to a convectively heated slippery surface. Thermal conductivity is assumed to be varied with temperature impacted by thermal radiation along with axisymmetric magnetohydrodynamics (MHD). Boundary layer approximations lead to partial differential equations, which are transformed into ordinary differential equations in light of a single phase model accounting for Cu-water and TiO2-water nanofluids. The resulting ODEs are solved via a finite difference based Keller box scheme. Various formidable physical parameters affecting fluid movement, difference in temperature, system entropy, skin friction and Nusselt number around the boundary are presented graphically and numerically discussed. It has also been observed that the nanofluid based on Cu-water is identified as a superior thermal conductor rather than TiO2-water based nanofluid.

2017 ◽  
Vol 9 (1) ◽  
pp. 140-161 ◽  
Author(s):  
M. Ferdows ◽  
Md. Shakhaoath Khan ◽  
Md. Mahmud Alam ◽  
A. A. Afify

AbstractThe study of radiative heat transfer in a nanofluid with the influence of magnetic field over a stretching surface is investigated numerically. Physical mechanisms responsible for magnetic parameter, radiation parameter between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. The parameters for Prandtl numberPr, Eckert numberEc, Lewis numberLe, stretching parameterb/aand constant parametermare examined. The governing partial differential equations were converted into nonlinear ordinary differential equations by using a suitable similarity transformation, which are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six order iteration scheme. The accuracy of the numerical method is tested by performing various comparisons with previously published work and the results are found to be in excellent agreement. Numerical results for velocity, temperature and concentration distributions as well as skin-friction coefficient, Nusselt number and Sherwood number are discussed at the sheet for various values of physical parameters.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
M. Subhas Abel ◽  
Jagadish V. Tawade ◽  
Jyoti N. Shinde

An analysis is performed to investigate the effect of MHD and thermal radiation on the two-dimensional steady flow of an incompressible, upper-convected Maxwells (UCM) fluid in presence of external magnetic field. The governing system of partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and is solved numerically by efficient shooting technique. Velocity and temperature fields have been computed and shown graphically for various values of physical parameters. For a Maxwell fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for the higher elastic number which agrees with the results of Hayat et al. 2007 and Sadeghy et al. 2006. The objective of the present work is to investigate the effect of elastic parameterβ, magnetic parameterMn, Eckert numberEc, Radiation parameterN,and Prandtl numberPron flow and heat transfer charecteristics.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2563
Author(s):  
Mashhour A. Alazwari ◽  
Nidal H. Abu-Hamdeh ◽  
Marjan Goodarzi

Nanofluids have better surface stability, thermal absorption, and distribution capacities are produced as heat transfer fluids. In current nanofluid-transport studies, together with the heat transfer mechanisms, entropy reduction in thermo- and non-Newtonian nanofluid models with changing thermophysical characteristics is heavily addressed. The entropy production is examined as thermodynamically stable first-grade viscoelastic nanofluid (FGVNF) flow over a flat penetrable, porous barrier. The uniform porous horizontal stretching of the surface in a Darcy type of pore media results in a fluid motion disturbance. In addition, this study also includes the effects of thermal radiation, viscous dissipation, and slip conditions at the border. Under boundary layer flow and Rosseland approximations, the governing mathematical equations defining the physical features of the FGVNF flow and heat transfer models are summarized. The governing nonlinear partial differential equation is transformed by similarity variables to achieve solutions in nonlinear ordinary differential equations. Approximative solutions for reduced ordinary differential equations are obtained by the Keller Box Scheme. Two distinct types of nanofluids, Copper-Engine Oil (Cu-EO) and Zirconium Dioxide-Engine Oil (ZrO2-EO), are considered in this research. The graphs are produced to examine the effects of the different physical factors for the speed, temperature, and entropy distributions. The significant findings of this study are that the critical characteristics of (boundary layer) BL collectively promote temperature variation, including slip speed, diverse thermal conductivity, and non-Newtonian first-grade viscoelastic nanofluid, the concentration of nanoparticles as well as thermal radiation, and a high porous media. The other noteworthy observation of this study demonstrates that the (Cu-EO) FGVNF is a better conductor than (ZrO2-EO) FGVNF transmission. The entropy of the system grows the Deborah number and volume fraction parameter.


2021 ◽  
Vol 8 (4) ◽  
pp. 807-820
Author(s):  
M. Zaydan ◽  
◽  
A. Wakif ◽  
E. Essaghir ◽  
R. Sehaqui ◽  
...  

The phenomenon of mixed convection heat transfer in a homogeneous mixture is deliberated thoroughly in this study for cooper-water nanofluids flowing inside a lid-driven square cavity. By adopting the Oberbeck-Boussinesq approximation and using the single-phase nanofluid model, the governing partial differential equations modeling the present flow are stated mathematically based on the Navier--Stokes and thermal balance formulations, where the important features of the scrutinized medium are presumed to remain constant at the cold temperature. Note here that the density quantity in the buoyancy body force is a linear temperature-dependent function. The characteristic quantities are computed realistically via the commonly used phenomenological laws and the more accurate experimental correlations. A feasible non-dimensionalization procedure has been employed to derive the dimensionless conservation equations. The resulting nonlinear differential equations are solved numerically for realistic boundary conditions by employing the fourth-order compact finite-difference method (FOCFDM). After performing extensive validations with the previously published findings, the dynamical and thermal features of the studied convective nanofluid flow are revealed to be in good agreement for sundry values of the involved physical parameters. Besides, the present numerical outcomes are discussed graphically and tabularly with the help of streamlines, isotherms, velocity fields, temperature distributions, and local heat transfer rate profiles.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2019 ◽  
Vol 97 (6) ◽  
pp. 579-587
Author(s):  
Azad Hussain ◽  
Zainia Muneer ◽  
M.Y. Malik ◽  
Saadia Ghafoor

The present study focuses on the non-Newtonian magnetohydrodynamic flow, under the kinetic postulate, of fluids that are initially liquid past a porous plate in the appearance of thermal radiation effects. Resemblance transfigurations are used to metamorphose the governing equations for temperature and velocity into a system of ordinary differential equations. We then solved these differential equations subject to convenient boundary conditions by using the shooting method along with the Runge–Kutta method. Heat transfer and characteristic flow results are acquired for different compositions of physical parameters. These results are extended graphically to demonstrate interesting attributes of the physics of the problem. Nusselt number and skin friction coefficients are also discussed via graphs and tables for different values of dimensionless parameters. Decline occurs in velocity profile due to escalating values of M. Temperature profile depicts growing behavior due to acceleration in the values of λ and M. Nusselt number and skin friction curves represent rising behavior according to their parameters.


Author(s):  
K. Saritha ◽  
R. Muthusami ◽  
M. Rameshkumar

This Paper contributes heat transfer phenomena in mixed convection flow of Siskoferronanofluidover a porous surface in the presence of a temperature gradient heat sink with prescribed heatflux. The effect of viscous dissipation and thermal radiation on the flow field is also taken in to consideration. The three types of ferromagnetic particles Nickel Zinc ferrite (Ni–ZnFe2O4), ManganeseZinc ferrite (Mn1/2Zn1/2Fe2O4) and Cobalt ferrite (CoFe2O4) are considered with water (H2O)and Ethylene Glycol (C2H6O2) as conventional base fluids. The RungeKuttaFehlberg method of numerical methodology is used to solve momentum and energy equations. With the help of graphs andtables, the effect of various associated physical parameters on the velocity, temperature, Skin frictioncoefficient and Nusselt number is studied. The present results indicate that the heat transfer rate ofEthylene Glycol based Siskoferronanofluid is higher than that of water based fluid and also waterbased Siskoferronanofluid reduces shear stress of the fluid flow rapidly than Ethylene glycol basedfluid. The accuracy of the results comparison table is validated with the current data.


2017 ◽  
Vol 378 ◽  
pp. 125-136 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
K. Ganesh Kumar ◽  
S. Manjunatha ◽  
Bijjanal Jayanna Gireesha

A comprehensive numerical study is conducted to investigate effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro polar fluid over a stretching surface with fluid particles suspension. Using suitable transformations, the governing equations of the problem are transformed in to a set of coupled nonlinear ordinary differential equations and then they are solved numerically using the Runge–Kutta–Fehlberg-45 method with the help of shooting technique. Authentication of the current method is proved by having compared with established results with limiting solution. The impact of the various stimulating parameters on the flow and heat transfer is analyzed and deliberated through plotted graphs in detail. We found that the velocity, angular velocity and temperature fields increase with an increase in the melting process of the stretching sheet. Also it is visualize that the shear stress factor is lower for micro polar fluids as compared to Newtonian fluids, which may be beneficial in flow and heat control of polymeric processing.


2015 ◽  
Vol 93 (5) ◽  
pp. 532-541 ◽  
Author(s):  
M. Modather M. Abdou ◽  
E. Roshdy EL-Zahar ◽  
Ali J. Chamkha

An analysis was carried out to study the effect of thermal radiation on magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid near the stagnation point of a vertical stretching sheet in a porous medium with internal heat generation–absorption. The flow is generated because of linear stretching of the sheet and influenced by the uniform magnetic field that is applied horizontally in the flow region. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically using an accurate implicit finite difference scheme. A comparison of the obtained results with previously published numerical results is done and the results are found to be in good agreement. The effects of the viscoelastic fluid parameter, magnetic field parameter, nonuniform heat source–sink, and the thermal radiation parameter on the heat transfer characteristics are presented graphically and discussed. The values of the skin friction coefficient and the local Nusselt number are tabulated for both cases of assisting and opposing flows.


Sign in / Sign up

Export Citation Format

Share Document