Effects of rupture complexity and stress regime on scaling relations of induced microseismic events

1996 ◽  
Vol 147 (2) ◽  
pp. 319-343 ◽  
Author(s):  
Theodore I. Urbancic ◽  
Cezar-Ioan Trifu
Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. ID35-ID44 ◽  
Author(s):  
Xiaodong Ma ◽  
Mark D. Zoback

We have conducted an integrated study to investigate the petrophysical and geomechanical factors controlling the effectiveness of hydraulic fracturing (HF) in four subparallel horizontal wells in the Mississippi Limestone-Woodford Shale (MSSP-WDFD) play in Oklahoma. In two MSSP wells, the minimum horizontal stress [Formula: see text] indicated by the instantaneous shut-in pressures of the HF stages are significantly less than the vertical stress [Formula: see text]. This, combined with observations of drilling-induced tensile fractures in the MSSP in a vertical well at the site, indicates that this formation is in a normal/strike-slip faulting stress regime, consistent with earthquake focal mechanisms and other stress indicators in the area. However, the [Formula: see text] values are systematically higher and vary significantly from stage to stage in two WDFD wells. The stages associated with the abnormally high [Formula: see text] values (close to [Formula: see text]) were associated with little to no proppant placement and a limited number of microseismic events. We used compositional logs to determine the content of compliant components (clay and kerogen). Due to small variations in the trajectories of the horizontal wells, they penetrated three thin, but compositionally distinct WDFD lithofacies. We found that [Formula: see text] along the WDFD horizontals increases when the stage occurred in a zone with high clay and kerogen content. These variations of [Formula: see text] can be explained by various degrees of viscous stress relaxation, which results in the increase in [Formula: see text] (less stress anisotropy), as the compliant component content increases. The distribution of microseismic events was also affected by normal and strike-slip faults cutting across the wells. The locations of these faults were consistent with unusual lineations of microseismic events and were confirmed by 3D seismic data. Thus, the overall effectiveness of HF stimulation in the WDFD wells at this site was strongly affected the abnormally high HF gradients in clay-rich lithofacies and the presence of preexisting, pad-scale faults.


Author(s):  
Lotte Melchior Larsen ◽  
David C. Rex ◽  
W. Stuart Watt ◽  
Philip G. Guise

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Melchior Larsen, L., Rex, D. C., Watt, W. S., & Guise, P. G. (1999). 40Ar–39Ar dating of alkali basaltic dykes along the southwest coast of Greenland: Cretaceous and Tertiary igneous activity along the eastern margin of the Labrador Sea. Geology of Greenland Survey Bulletin, 184, 19-29. https://doi.org/10.34194/ggub.v184.5227 _______________ A 380 km long coast-parallel alkali basalt dyke swarm cutting the Precambrian basement in south-western Greenland has generally been regarded as one of the earliest manifestations of rifting during continental stretching prior to break-up in the Labrador Sea. Therefore, the age of this swarm has been used in models for the evolution of the Labrador Sea, although it has been uncertain due to earlier discrepant K–Ar dates. Two dykes from this swarm situated 200 km apart have now been dated by the 40Ar–39Ar step-heating method. Separated biotites yield plateau ages of 133.3 ± 0.7 Ma and 138.6 ± 0.7 Ma, respectively. One of the dykes has excess argon. Plagioclase separates confirm the biotite ages but yield less precise results. The age 133– 138 Ma is earliest Cretaceous, Berriasian to Valanginian, and the dyke swarm is near-coeval with the oldest igneous rocks (the Alexis Formation) on the Labrador shelf. A small swarm of alkali basalt dykes in the Sukkertoppen (Maniitsoq) region of southern West Greenland was also dated. Two separated kaersutites from one sample yield an average plateau age of 55.2 ± 1.2 Ma. This is the Paleocene–Eocene boundary. The swarm represents the only known rocks of that age within several hundred kilometres and may be related to changes in the stress regime during reorganisation of plate movements at 55 Ma when break-up between Greenland and Europe took place.


2017 ◽  
Author(s):  
Matthew P. McKay ◽  
◽  
William T. Jackson

2019 ◽  
Vol 55 (5) ◽  
pp. 751-764
Author(s):  
N. G. Shvarev ◽  
N. S. Markov
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1117
Author(s):  
Anatoly Mikhailovich Zeyliger ◽  
Olga Sergeevna Ermolaeva

In the past few decades, combinations of remote sensing technologies with ground-based methods have become available for use at the level of irrigated fields. These approaches allow an evaluation of crop water stress dynamics and irrigation water use efficiency. In this study, remotely sensed and ground-based data were used to develop a method of crop water stress assessment and analysis. Input datasets of this method were based on the results of ground-based and satellite monitoring in 2012. Required datasets were collected for 19 irrigated alfalfa crops in the second year of growth at three study sites located in Saratovskoe Zavolzhie (Saratov Oblast, Russia). Collected datasets were applied to calculate the dynamics of daily crop water stress coefficients for all studied crops, thereby characterizing the efficiency of crop irrigation. Accordingly, data on the crop yield of three harvests were used. An analysis of the results revealed a linear relationship between the crop yield of three cuts and the average value of the water stress coefficient. Further application of this method may be directed toward analyzing the effectiveness of irrigation practices and the operational management of agricultural crop irrigation.


2020 ◽  
Vol 15 (S359) ◽  
pp. 62-66
Author(s):  
Carlo Cannarozzo ◽  
Carlo Nipoti ◽  
Alessandro Sonnenfeld ◽  
Alexie Leauthaud ◽  
Song Huang ◽  
...  

AbstractThe evolution of the structural and kinematic properties of early-type galaxies (ETGs), their scaling relations, as well as their stellar metallicity and age contain precious information on the assembly history of these systems. We present results on the evolution of the stellar mass-velocity dispersion relation of ETGs, focusing in particular on the effects of some selection criteria used to define ETGs. We also try to shed light on the role that in-situ and ex-situ stellar populations have in massive ETGs, providing a possible explanation of the observed metallicity distributions.


Sign in / Sign up

Export Citation Format

Share Document