40Ar–39Ar dating of alkali basaltic dykes along the southwest coast of Greenland: Cretaceous and Tertiary igneous activity along the eastern margin of the Labrador Sea

Author(s):  
Lotte Melchior Larsen ◽  
David C. Rex ◽  
W. Stuart Watt ◽  
Philip G. Guise

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Melchior Larsen, L., Rex, D. C., Watt, W. S., & Guise, P. G. (1999). 40Ar–39Ar dating of alkali basaltic dykes along the southwest coast of Greenland: Cretaceous and Tertiary igneous activity along the eastern margin of the Labrador Sea. Geology of Greenland Survey Bulletin, 184, 19-29. https://doi.org/10.34194/ggub.v184.5227 _______________ A 380 km long coast-parallel alkali basalt dyke swarm cutting the Precambrian basement in south-western Greenland has generally been regarded as one of the earliest manifestations of rifting during continental stretching prior to break-up in the Labrador Sea. Therefore, the age of this swarm has been used in models for the evolution of the Labrador Sea, although it has been uncertain due to earlier discrepant K–Ar dates. Two dykes from this swarm situated 200 km apart have now been dated by the 40Ar–39Ar step-heating method. Separated biotites yield plateau ages of 133.3 ± 0.7 Ma and 138.6 ± 0.7 Ma, respectively. One of the dykes has excess argon. Plagioclase separates confirm the biotite ages but yield less precise results. The age 133– 138 Ma is earliest Cretaceous, Berriasian to Valanginian, and the dyke swarm is near-coeval with the oldest igneous rocks (the Alexis Formation) on the Labrador shelf. A small swarm of alkali basalt dykes in the Sukkertoppen (Maniitsoq) region of southern West Greenland was also dated. Two separated kaersutites from one sample yield an average plateau age of 55.2 ± 1.2 Ma. This is the Paleocene–Eocene boundary. The swarm represents the only known rocks of that age within several hundred kilometres and may be related to changes in the stress regime during reorganisation of plate movements at 55 Ma when break-up between Greenland and Europe took place.

1990 ◽  
Vol 127 (5) ◽  
pp. 427-433 ◽  
Author(s):  
D. L. Reid ◽  
A. F. Cooper ◽  
D. C. Rex ◽  
R. E. Harmer

AbstractNew radiometric age data are reported for alkaline centres in southern Namibia, and are discussed together with published age data in terms of models put forward to account for post-Karoo (Mesozoic–Recent) alkaline magmatism within the African plate. Agreement between K–Ar and Rb–Sr ages indicate emplacement of the Dicker Willem carbonatite in southern Namibia at 49 ± 1 Ma. Alkaline rocks associated with the Gross Brukkaros volcano show a discordant radiometric age pattern, but the best estimate for the age of this complex is 77 ± 2 Ma, similar to that obtained for the neighbouring Gibeon carbonatite-kimberlite province. The Dicker Willem carbonatite is therefore younger than the Luderitz alkaline province (133 ± 2 Ma), and the Gross Brukkaros volcano, but is older than the Klinghardt phonolite field (29–37 Ma). The new age data argue against a distinct periodicity in alkaline igneous activity in southern Africa, thereby ruling out possible controls by episodic marginal upwarping of the subcontinent. Although the available age data do not appear to be consistent with the passage of one or even two hotspots under southern Namibia, it is argued that the surface expression of hotspots under continents may be so large and overlapping that within-plate magmatism attributed to these thermal anomalies need not necessarily be confined to narrow linear belts or show an age progression. The role of hotspots in continental alkaline magmatism is most likely one of melt generation, while local crustal structure probably controls the distribution and timing of eruption. Major tectonic boundaries in the Precambrian basement underlying southern Namibia seem to have controlled the development of Tertiary alkaline centres in that region.


2013 ◽  
Vol 5 (2) ◽  
pp. 917-962 ◽  
Author(s):  
M. Hosseinpour ◽  
R. D. Müller ◽  
S. E. Williams ◽  
J. M. Whittaker

Abstract. Reconstructing the opening of the Labrador Sea and Baffin Bay between Greenland and North America remains controversial. Recent seismic data suggest that magnetic lineations along the margins of the Labrador Sea, originally interpreted as seafloor spreading anomalies, may lie within the crust of the continent–ocean transition. These data also suggest a more seaward extent of continental crust within the Greenland margin near the Davis Strait than assumed in previous full-fit reconstructions. Our study focuses on reconstructing the full-fit configuration of Greenland and North America using an approach that considers continental deformation in a quantitative manner. We use gravity inversion to map crustal thickness across the conjugate margins, and assimilate observations from available seismic profiles and potential field data to constrain the likely extent of different crustal types. We derive end-member continental margin restorations following alternative interpretations of published seismic profiles. The boundaries between continental and oceanic crust (COB) are restored to their pre-stretching locations along small circle motion paths across the region of Cretaceous extension. Restored COBs are fitted quantitatively to compute alternative total-fit reconstructions. A preferred full-fit model is chosen based on the strongest compatibility with geological and geophysical data. Our preferred model suggests that (i) the COB lies oceanward of magnetic lineations interpreted as magnetic anomaly 31 (70 Ma) in the Labrador Sea, (ii) all previously identified magnetic lineations landward of anomaly 27 reflect intrusions into continental crust, and (iii) the Ungava fault zone in Davis Strait acted as a leaky transform fault during rifting. This robust plate reconstruction reduces gaps and overlaps in the Davis Strait and suggests that there is no need for alternative models proposed for reconstructions of this area including additional plate boundaries in North America or Greenland. Our favored model implies that break up and formation of continent–ocean transition (COT) first started in the southern Labrador Sea and Davis Strait around 88 Ma and then propagated north and southwards up to onset of real seafloor spreading at 63 Ma in the Labrador Sea. In the Baffin Bay, continental stretching lasted longer and actual break up and seafloor spreading started around 61 Ma (Chron 26).


2002 ◽  
Vol 139 (3) ◽  
pp. 257-279 ◽  
Author(s):  
A. DINI ◽  
F. INNOCENTI ◽  
S. ROCCHI ◽  
S. TONARINI ◽  
D. S. WESTERMAN

Since late Miocene time, post-collisional extension of the internal parts of the Apennine orogenic belt has led to the opening of the Tyrrhenian basin. Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Italian mainland during this time, building up the Tuscan Magmatic Province as the fold belt was progressively thinned, heated and intruded by mafic magmas. An intrusive complex was progressively built on western Elba Island by emplacement, within a stack of nappes, of multiple, shallow-level porphyritic laccoliths, a major pluton, and a final dyke swarm, all within the span from about 8 to 6.8 Ma. New geochemical and Sr–Nd isotopic investigations constrain the compositions of materials involved in the genesis of the magmas of Elba Island compared to the whole Tuscan Magmatic Province. Several distinct magma sources, in both the crust and mantle, have been identified as contributing to the Elba magmatism as it evolved from crust-, to hybrid-, to mantle-dominated. However, a restricted number of components, geochemically similar to mafic K-andesites of the Island of Capraia and crustal melts like the Cotoncello dyke at Elba, are sufficient to account for the generation by melt hybridization of the most voluminous magmas (c. εNd(t) −8.5, 87Sr/86Sr 0.715). Unusual magmas were emplaced at the beginning and end of the igneous activity, without contributing to the generation of these hybrid magmas. These are represented by early peraluminous melts of a different crustal origin (εNd(t) between −9.5 and −10.0, 87Sr/86Sr variable between 0.7115 and 0.7146), and late mantle-derived magma strongly enriched in incompatible elements (εNd(t) = −7.0, 87Sr/86Sr = 0.7114) with geochemical–isotopic characteristics intermediate between contemporaneous Capraia K-andesites and later lamproites from the Tuscan Magmatic Province. Magmas not involved in the generation of the main hybrid products are not volumetrically significant, but their occurrence emphasizes the highly variable nature of crust and mantle sources that can be activated in a short time span during post-collisional magmatism.


1975 ◽  
Vol 12 (1) ◽  
pp. 44-51 ◽  
Author(s):  
A. F. King ◽  
N. J. McMillan

A unique occurrence of Mesozoic breccia cut by lamprophyric-carbonatite dikelets, near Makkovik, Labrador is interpreted to relate to the opening of the Labrador Sea. The breccia has been dated by nannofossils; vitrinite reflectance studies show that some time during or after deposition the rock was heated to at least 170 °C. It is suggested that shallow seas extended westward beyond the present Labrador Marginal Trough during early Jurassic time and that the period of late alkaline igneous activity is related to the rifting between Greenland and Labrador that commenced about the middle of the Mesozoic Era.


1994 ◽  
Vol 41 (1) ◽  
pp. 26-34 ◽  
Author(s):  
John T. Andrews ◽  
Helmut Erlenkeuser ◽  
Katherine Tedesco ◽  
Ali E. Aksu ◽  
A.J.Timothy Jull

AbstractTwo major meltwater events are documented in cores from the NW Labrador Sea. One occurred ca. 20,000 14C yr B.P. in association with deposition of a major detrital carbonate unit. Both prior to and after this event, δ18O values of near-surface planktonic foraminifera were 4.5%, indicating fully enriched glacial values. A younger event (ca. 14,000 14 C yr B.P.) is characterized by a dramatic change in δ18O from 4.5 to 2.0% and coincided with the retreat of ice from the outer SE Baffin Shelf, possibly into Hudson Strait. These meltwater events coincide with Heinrich (H) layers 1 and 2 from North Atlantic sediments. The 14,000 14C yr B.P. meltwater event indicates that the eastern margin of the Laurentide Ice Sheet also underwent rapid retreat at approximately the same time as other ice sheet margins around the NE North Atlantic. A third major detrital carbonate event at the base of HU87-033-009, possibly correlative with Heinrich layer 3, occurred ca. 33,960 ± 675 14 C yr B.P.; however, this is older than the accepted date for H-3 of 27,000 14C yr B.P. and may be H-4.


1988 ◽  
Vol 25 (5) ◽  
pp. 732-743 ◽  
Author(s):  
H. C. Halls ◽  
E. G. Shaw

Archean rocks form the eastern margin of the 1.1 Ga old Central North American rift along the eastern shore of Lake Superior and have been tilted westwards in response to rifting. Paleomagnetic and structural data from 2.6 Ga old Matachewan dykes suggest a westward crustal tilt of about 60°, which agrees well with dips recorded in nearby Keweenawan volcanics that rest directly on basement rocks. The Matachewan dyke swarm occurs throughout the east shore region of Lake Superior, whereas Keweenawan supracrustal sequences, which give a more precise estimate of tilt, are restricted to a few isolated shoreline patches. Estimates of crustal tilt can be obtained from the dykes on a regional basis, thus generating a more complete picture of basement deformation adjacent to a major intracratonic rift.


2014 ◽  
Vol 152 (1) ◽  
pp. 176-183 ◽  
Author(s):  
XUXUAN MA ◽  
LIANGSHU SHU ◽  
JOSEPH G. MEERT ◽  
ZHIQIN XU

AbstractThe Central Asian Orogenic Belt is an accretionary orogen with many distinct terranes including the Chinese Central Tianshan, whose Precambrian tectonic affinity is not yet clearly known. We present Precambrian age spectra of inherited/xenocrystic zircons from magmatic rocks in the Chinese Central Tianshan, collected from published papers. The age patterns are dominated by zircons with ages ranging from 3261 to 541 Ma. These spectra provide robust clues regarding the Precambrian affinity of the Chinese Central Tianshan. The age spectra record two major tectonothermal events, represented by salient age peaks of c. 950 and 900 Ma within the ‘Grenville Orogeny’ period, and age peaks at c. 750 and 630 Ma, synchronous with magmatic events corresponding to Rodinia break-up. These results are consistent with the hypothesis that the Chinese Central Tianshan was part of the Tarim craton during Precambrian time as well as documenting its incorporation into, and separation from the Rodinia landmass.


2008 ◽  
Vol 145 (5) ◽  
pp. 702-713 ◽  
Author(s):  
J. N. CARNEY ◽  
P. ALEXANDRE ◽  
M. S. PRINGLE ◽  
T. C. PHARAOH ◽  
R. J. MERRIMAN ◽  
...  

Abstract40Ar–39Ar dating by a combination of spot analysis and step-heating has been carried out on mica fabrics from slaty cleavage and a shear zone in the Neoproterozoic to Cambrian rocks of Charnwood Forest, Leicestershire. The results indicate that crust adjacent to the eastern margin of the Midlands Microcraton was affected by localized epizonal metamorphism and penetrative deformation between 425 and 416 Ma (Silurian to earliest Devonian), somewhat earlier than the Acadian Phase of the Caledonian orogeny recorded elsewhere in southern Britain. The Charnwood cleavage geometry suggests that the deformation arose within a dextral transpressional regime along the eastern margin of the Midlands Microcraton. This tectonism may have overlapped with pre-Acadian sinistral transtensional movements documented for the Welsh Basin and Lake District areas, to the west and north of the Midlands Microcraton.


Sign in / Sign up

Export Citation Format

Share Document