Criterial description of flame geometry for a homogeneous mixture

1969 ◽  
Vol 7 (4) ◽  
pp. 106-108
Author(s):  
V. K. Baev
2019 ◽  
Vol 2 (2) ◽  
pp. 49-50
Author(s):  
Madihah Khan ◽  
Alyxandra Thiessen ◽  
I Teng Cheong ◽  
Sarah Milliken ◽  
Jonathan G. C. Veinot

Current LED lights are created with quantum dots made of metals like selenium, tellurium, and cadmium which can be toxic. Silicon is used as a non-toxic substance and is the second most abundant element in the earth's crust. When silicon is prepared at a nanometer size, unique luminesce optical properties emerge that can be tuned using sized surface chemistry. Therefore, silicon nanoparticles can be used as an alternative emitter for LED lights. To produce hydride-terminated silicon nanoparticles we must synthesize the particles. Hydrogen silsesquioxane (HSQ) is processed at 1100 °C for one hour causing Si to cluster and form a SiO2 matrix, also known as the composite. The composite is then manually crushed in ethanol. The solution is further ground using glass beads, then filtered to get the composite powder. The final step is the HF etching. The hydride-terminated particles are then functionalized using three different methods to synthesize silicon nanoparticle-polystyrene hybrids, which determine the magnitude of luminosity and the quality of the hybrids. We spin coat each method and results were analyzed. Method 1 uses heat to functionalize hydride-terminated silicon nanoparticles with styrene. This process also causes styrene to attach to styrene to form a polystyrene chain. Method 1 gave a homogeneous mixture which yielded a consistent, bright and homogenous film. In method 2, dodecyl-terminated silicon nanoparticles are mixed with premade polystyrene. While this method gave better control of the amount of silicon nanoparticles inside the polymer hybrid, a homogeneous mixture was not created due to the different structures of polystyrene and dodecyl chains. Method 3 has dodecyl-terminated silicon with in-situ styrene polymerization. It generated a homogeneous mixture. The in-situ polymerization stabilizes the particles, allowing for brighter luminescence. Because of the stability and lower molecular weight, the mixture was easier to dissolve. We concluded that the different methods resulted in different polymer molecular weights and this created distinct properties between the polymer hybrids when spin-coating.    


2021 ◽  
Author(s):  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Masao Ono

Abstract For subsea mining, it is important to predict the pressure loss in oscillating pipes for the safe and reliable operation of ore lifting as well as the design of lifting system. In the present paper, the authors focused on the internal flow in vertical lifting pipe oscillating in the axial direction and carried out slurry transport experiment to investigate the effects of pipe oscillation on the pressure loss. The spherical alumina beads and glass beads were used as the solid particles in the experiment, and the oscillating periods and amplitudes of pipe model as well as the solid concentrations and the mean slurry velocities were varied. The time-averaged components of hydraulic gradient calculated by the prediction method for the steady flow proposed in the past by the authors agreed well with the experimental ones. As for the fluctuating components of hydraulic gradient, the calculation results using a homogeneous mixture model were compared with the experimental data. The comparison result indicated that the homogeneous mixture model would be applicable to the prediction of pressure loss in the vertical pipe oscillating in the axial direction.


2010 ◽  
Vol 3 (2) ◽  
pp. 47-60
Author(s):  
Alexey V. Starov

In this paper, analysis of existing methods application of criterial description of ignition conditions and combustion break-out for summarizing of experimental results is carried out. Experimental results are obtained at investigations of hydrogen combustion in combustor with high supersonic speed of airflow. For these conditions selection of several criterions was substantiated and they have a good agreement with new experimental results. At the same time complexity of determination of experimental physical parameters, which are included in criterions, do not allow confidently to apply them for prediction of steady-state combustion limits. Therefore further accumulation of experimental data and development of measurement methods are necessary for accurate criterions obtaining.


Sign in / Sign up

Export Citation Format

Share Document